21,394 research outputs found

    Three-generation neutrino oscillations in curved spacetime

    Get PDF
    Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conversion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant at the vicinities of spacetime singularities.Comment: 25 pages, 5 figures, 2 tables. Some changes are made according to referee's suggestions. The final version is to be published at Nuclear Physics

    Reverse spatial visual top-k query

    Get PDF
    With the wide application of mobile Internet techniques an location-based services (LBS), massive multimedia data with geo-tags has been generated and collected. In this paper, we investigate a novel type of spatial query problem, named reverse spatial visual top- kk query (RSVQ k ) that aims to retrieve a set of geo-images that have the query as one of the most relevant geo-images in both geographical proximity and visual similarity. Existing approaches for reverse top- kk queries are not suitable to address this problem because they cannot effectively process unstructured data, such as image. To this end, firstly we propose the definition of RSVQ k problem and introduce the similarity measurement. A novel hybrid index, named VR 2 -Tree is designed, which is a combination of visual representation of geo-image and R-Tree. Besides, an extension of VR 2 -Tree, called CVR 2 -Tree is introduced and then we discuss the calculation of lower/upper bound, and then propose the optimization technique via CVR 2 -Tree for further pruning. In addition, a search algorithm named RSVQ k algorithm is developed to support the efficient RSVQ k query. Comprehensive experiments are conducted on four geo-image datasets, and the results illustrate that our approach can address the RSVQ k problem effectively and efficiently

    SVS-JOIN : efficient spatial visual similarity join for geo-multimedia

    Get PDF
    In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-scale geo-multimedia retrieval. Spatial similarity join is one of the significant problems in the area of spatial database. Previous works focused on spatial textual document search problem, rather than geo-multimedia retrieval. In this paper, we investigate a novel geo-multimedia retrieval paradigm named spatial visual similarity join (SVS-JOIN for short), which aims to search similar geo-image pairs in both aspects of geo-location and visual content. Firstly, the definition of SVS-JOIN is proposed and then we present the geographical similarity and visual similarity measurement. Inspired by the approach for textual similarity join, we develop an algorithm named SVS-JOIN B by combining the PPJOIN algorithm and visual similarity. Besides, an extension of it named SVS-JOIN G is developed, which utilizes spatial grid strategy to improve the search efficiency. To further speed up the search, a novel approach called SVS-JOIN Q is carefully designed, in which a quadtree and a global inverted index are employed. Comprehensive experiments are conducted on two geo-image datasets and the results demonstrate that our solution can address the SVS-JOIN problem effectively and efficiently

    Full linear perturbations and localization of gravity on f(R,T)f(R,T) brane

    Full text link
    We study the thick brane world system constructed in the recently proposed f(R,T)f(R,T) theories of gravity, with RR the Ricci scalar and TT the trace of the energy-momentum tensor. We try to get the analytic background solutions and discuss the full linear perturbations, especially the scalar perturbations. We compare how the brane world model is modified with that of general relativity coupled to a canonical scalar field. It is found that some more interesting background solutions are allowed, and only the scalar perturbation mode is modified. There is no tachyon state exists in this model and only the massless tensor mode can be localized on the brane, which recovers the effective four-dimensional gravity. These conclusions hold provided that two constraints on the original formalism of the action are satisfied.Comment: v3: 8 pages, 2 figures, improved version with minor corrections, accepted by EPJ

    Simultaneous Feature and Body-Part Learning for Real-Time Robot Awareness of Human Behaviors

    Full text link
    Robot awareness of human actions is an essential research problem in robotics with many important real-world applications, including human-robot collaboration and teaming. Over the past few years, depth sensors have become a standard device widely used by intelligent robots for 3D perception, which can also offer human skeletal data in 3D space. Several methods based on skeletal data were designed to enable robot awareness of human actions with satisfactory accuracy. However, previous methods treated all body parts and features equally important, without the capability to identify discriminative body parts and features. In this paper, we propose a novel simultaneous Feature And Body-part Learning (FABL) approach that simultaneously identifies discriminative body parts and features, and efficiently integrates all available information together to enable real-time robot awareness of human behaviors. We formulate FABL as a regression-like optimization problem with structured sparsity-inducing norms to model interrelationships of body parts and features. We also develop an optimization algorithm to solve the formulated problem, which possesses a theoretical guarantee to find the optimal solution. To evaluate FABL, three experiments were performed using public benchmark datasets, including the MSR Action3D and CAD-60 datasets, as well as a Baxter robot in practical assistive living applications. Experimental results show that our FABL approach obtains a high recognition accuracy with a processing speed of the order-of-magnitude of 10e4 Hz, which makes FABL a promising method to enable real-time robot awareness of human behaviors in practical robotics applications.Comment: 8 pages, 6 figures, accepted by ICRA'1
    • …
    corecore