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Abstract

Three-generation MSW effect in curved spacetime is studied and a brief discussion on the gravitational 
correction to the neutrino self-energy is given. The modified mixing parameters and corresponding conver-
sion probabilities of neutrinos after traveling through celestial objects of constant densities are obtained. The 
method to distinguish between the normal hierarchy and inverted hierarchy is discussed in this framework. 
Due to the gravitational redshift of energy, in some extreme situations, the resonance energy of neutrinos 
might be shifted noticeably and the gravitational effect on the self-energy of neutrino becomes significant 
at the vicinities of spacetime singularities.
© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The theory about neutrino has so far been well-established and oscillations among three gener-
ations are experimentally observed as the mixing angles are measured with rather high accuracy 
based on the Earth experiments with long and short baselines, even though the CP violating phase 
is not well determined yet. In terms of the measured values the solar and atmospheric neutrino 
phenomena are perfectly explained. Now people turn their attention to the cosmic neutrino which, 
as is well known, serves as a unique messenger to provide us with valuable information of proper-
ties of super-large celestial objects, explosions of supernovae and even the structure of the earlier 
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universe which was not optically transparent. This topic attracts much attention from theorists 
and experimentalists of particle physics. On the long way from the production source to the earth 
detectors, the neutrino beam would pass many star clusters and galaxies (including the source 
of production) whose large mass would curve the spacetime of their vicinities. As it traverses 
the massive region, it undergoes the Mikheyev–Smirnov–Wolfenstein (MSW) effect [1] which 
determines its evolution. It is well understood how the electron neutrino produced in the Sun 
converses to other flavors due to the MSW effect. By contrast, in the massive celestial objects, 
the MSW mechanism would be affected by the gravitational field and have a different behavior. 
In this work, we are going to investigate the modification caused by the curved spacetime.

Various works have been dedicated to neutrino oscillations in curved spacetime; it was first 
pioneered by Stodolsky [2] and then discussed in detail by many authors [3–16]. There are sev-
eral methods developed and applied: plane wave method [5,8,10], WKB approximation [2,11,
13,16] and geometric treatment [6]. For various metrics: such as Schwarzschild metric [3–7,9,
10], Kerr metric [8,11], Kerr–Newman metric [16], Hartle–Thorne metric [15], Lense–Thirring 
metric [14], and for different celestial objects: active galactic nuclei [4], neutron stars [3] and 
supernovae [3,12], discussions are made. The possible spin oscillation in gravitational field is 
investigated later [17–21].

Most of the former literatures are focused on the two-generation oscillations and to the best of 
our knowledge, three-generation oscillations and the MSW effect and the corresponding neutrino 
self-energy correction in curved spacetime have not been studied yet. This topic is directly linked 
to one of the most fundamental yet undetermined features of neutrinos; Mass Hierarchy Problem. 
One of the two major experimental approaches [22] to solve this problem is observing the MSW 
effect which would clearly indicate how the conversion probability is related to the sign of �m2

31. 
Furthermore, determining this puzzle may play a significant role for understanding the nature of 
neutrinos (Dirac or Marjonara). In this paper we present a preliminary discussion on the topic.

In Sec. 2 we give a short review of the geometric treatment of the phase differences in neutrino 
oscillations. In Sec. 3 we discuss the possible corrections of the neutrino self-energy in curved 
spacetime briefly. In Sec. 4 and Sec. 5 we make explicit calculations on three-generation neutrino 
oscillations in vacuum and matter in a static, spherically symmetric spacetime. In Sec. 6 the 
numerical estimations of the strength of such modifications are carried out and our conclusion is 
summarized in Sec. 7. It is noted that here we choose the sign of metric to be diag(−, +, +, +)

and use the natural unit system with h̄ = c = 1.

2. Geometric effects on the phase differences

Two critical points concerning neutrino oscillations in curved spacetime are the definitions of 
the energy and phase difference occurring in the formulation of neutrino oscillations. Here we 
apply a framework for curved spacetime where the geometric effect manifests [6], the energy is 
defined clearly and the phase difference is covariantly expressed. For the convenience of readers, 
only results of this treatment are listed here. The concerned formalism and notations are reviewed 
in Appendix A.

The original expression of the one-particle-neutrino wave function in flat spacetime is

|�α(x, t) 〉=
∑
j

Uαj e
iPμxμ

∣∣νj

〉
, (1)

where |�α(x, t) 〉 denotes the wave function in the flavor representation and is expanded into 
|�α(x, t) 〉=∑

Uαj

∣∣νj

〉
with 

∣∣νj

〉
being the wave function in the mass representation. The ro-
j
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man letters α=ν,μ,τ and the Latin letters j=1,2,3 denote flavor and mass states, respectively. 
Uαj is the element of the neutrino mixing matrix (PMNS matrix). P μ is the four-momentum of 
neutrino in the mass basis and eiPμxμ is the vacuum evolution phase which reduces to eiEt in the 
non-relativistic Schrödinger framework.

Generalizing Eq. (1) for the environment filled with electrons in a gravitational field, the 
formalism would be modified to be an equation in the curved spacetime as

|�α(τ) 〉=
∑
j

Uαj e
i
∫

( M2
2 +pμAμ)dτ

∣∣νj

〉
, (2)

where the position and time coordinates are replaced by an affine parameter τ , M2 is an operator 
acting on neutrino wave functions and its eigenvalues are the square of neutrino masses. pμ is 
the tangent vector to the path along which neutrinos travel. This tangent vector is chosen so that 
p0=P 0 and the rest three spatial components are parallel to the three spatial components of P μ. 
Aμ is the effective potential caused by the electron environment. We can define the evolution 
phases of the corresponding wave functions as

�≡ei
∫

( M2
2 +pμAμ)dτ . (3)

Differentiating Eq. (2) a Schrödinger-like evolution equation is yielded

−i
∂ |�α(τ) 〉

∂τ
=(

M2

2
+pμAμ) |�α(τ) 〉 , (4)

and it can be seen that treating M
2

2 +pμAμ as an effective Hamiltonian would be of convenience.
Then in the mass representation, using Eq. (2) one can write down the probability of con-

version for a neutrino from α flavor to β flavor after traveling a spacetime interval �s(τ − τ0)

as

Qβα≡∣∣〈�β (τ) |�α(τ0) 〉
∣∣2=

∑
i,j

U
†
αiUβiUαjU

†
βj e

i�ji , (5)

where the phase difference �ij of two mass eigenstates is defined as

�ji≡
∫

(
m2

j−m2
i

2
+�pμAμ)dτ≡

∫
(
�ji

2
+�pμAμ)dτ , (6)

where �ji≡m2
j−m2

i denotes the mass difference and mj is the eigenvalue of the corresponding 
mass eigenstate. �pμAμ is the difference of the electron-environmental contribution due to the 
asymmetric matter effect, where W boson exchange only affects electron neutrinos. Noticing 
these quantities are expressed in the mass basis and so that M2=diag(m2

1,m
2
2,m

2
3), we are able 

to write down Eq. (6). This phase difference and mixing matrix will compose the sufficient 
condition for calculating the conversion probability.

3. Neutrino self-energy in curved spacetime

We now turn to the specific expression of the effective potential Aμ which is induced by the 
corrections to the neutrino self-energy in the electron environment. The leading order contribu-
tion to the self-energy arises from the charged current and neutral current interactions. The later 
one has exactly the same effect on all the three neutrino generations, thus shows no significance 
to the MSW effect and can be neglected.
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Fig. 1. Feynman diagram of charged current interaction of electron neutrinos.

As is shown in Fig. 1, the Feynman diagram of the contribution from the charged current 
interaction (W boson exchange) is presented. To compute this diagram in curved spacetime, two 
modifications should be accounted.

1. Finite-temperature field theory in curved spacetime [23–26]. In the gravitational background, 
the definitions of both vacuum and thermal equilibria become ambiguous; a vacuum state in 
equilibrium seen by one observer may appear as a state with particles and deviated from 
equilibrium [27]. Besides, the possible phase transitions are also of interest. To solve these 
difficulties a finite-temperature field theory in curved spacetime is needed.

2. Quantum field theory in curved spacetime and particle creation [28,29]. As mentioned 
above, the definition of vacuum is not consistent with diffeomorphisms. Since particles are 
created via the coupling between gravitational field and quantum field, the Fock space on 
which the field operators act is changed, thus one may have to distinguish between the 
in-state and out-state Fock space. To avoid that ambiguity, one has to construct two sets of 
field operators and vacuum states corresponding to the in and the out states, respectively. The 
unique method for defining such states is still absent at present. Furthermore, due to these 
in and out states there exist two types of the S-matrix elements in the amplitudes. Thus the 
Feynman rules for accounting the self-energy of neutrinos in the electroweak theory should 
be modified.

These two effects are most important for discussions in some cases such as the expanding 
universe, where the dynamic spacetime deviates the quantum states from equilibrium, or the 
ultra-strong gravitational field, where the particle creation becomes possible. Yet if we restrict 
ourselves to neutrino oscillations in celestial objects like sun or supernovae, the calculation can 
be substantially simplified. Besides, the region where the MSW resonance appears can be very 
narrow [30], so the variation of the metric inside this region can be neglected. Thus it can be 
assumed that the environmental matter is always in equilibrium and no particle creation takes 
place in this case. Only propagators should be modified while vertices and Feynman rules remain 
the same.

Under these approximations and keeping the propagators in the momentum representation, 
we can write down the common Feynman rules for Fig. 1 as

−i
(p)=−i

∫
d4k(− i√

2
gW )γ μPLiSe(k)(− i√

2
gW )γ μPL

i

(k−p)2−m2
W

, (7)

where gW is the coupling constant of SU(2), PL is the left-projection operator, γ μ is the 
gamma matrix in curved spacetime and is defined in Eq. (71), iSe is the propagator of elec-
trons in thermal bath with gravitational background. The W boson propagator has been written 
in ’t Hooft–Feynman gauge. With the gravitational modifications, the propagator of spin-1/2
fermions written in the momentum representation reads [31]

iS(k)=(1+f1(x
μ)(− ∂

)+f2(x
μ)(− ∂

)2)iS0(k), (8)

∂m2 ∂m2
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where f1 and f2 are functions of xμ, iS0(k) is the corresponding electron propagator in ther-
mal bath with spacetime being flat. Considering modifications up to the order of ∂

∂m2 only and 
ignoring the higher oder terms in f1(x

μ) which are dependent on the electron momentum, the 
electron propagator in curved spacetime is

iS(k)=(1+ 1

12
R(− ∂

∂m2
))iS0(k), (9)

where R is the Ricci scalar curvature of the spacetime.
Writing down the flat-spacetime propagator of electron field in terms of the real-time formal-

ism with finite temperature [32]:

iS0(k)=(γ μkμ+me)(
i

k2−me
2
−2πδ(k2−me

2)fF (kμuμ)), (10)

where the mass of fermion m has been replaced by the mass of electron me and fF (x) represents 
the Fermi distribution function

fF (x)= θ(x)

eβ(x−μ)+1
+ θ(−x)

e−β(x−μ)+1
, (11)

where β is the inverse of temperature, μ is the chemical potential of the electron and θ(x) is the 
Heaviside step function.

Noticing that in Eq. (10), the first term is the common propagator in vacuum except modified 
gamma matrices being introduced and it may lead to infinity when the loop diagrams involving 
the propagator are integrated. The renormalization schemes in curved spacetime have been dis-
cussed in some details by several authors [31,33]. Under the condition that temperature is just 
above the threshold of thermal effects on electron, the propagator of W boson is unchanged and 
the dispersion relation of electron is non-relativistic ωk= k2

2me
where ωk is the energy of electron.

Then Eq. (7) can be evaluated up to the order of 1/m2
W as


(p)=(1− R
16m2

e

)
√

2GF Nee
μ
a ua, (12)

where GF is the Fermi coupling constant, Ne is the locally measured electron number density 
and ua is the four-velocity of the environmental electron current. Comparing with the common 
result obtained in flat spacetime, the self-energy is modified by the tetrad eμ

a and an extra term 
1− R

16m2
e

arising from gravitation background. This term can be separated as an extra gravitational 
phase.

4. Neutrino propagation in vacuum with curved spacetime

In this section we consider the neutrino propagation in a general static and spherically sym-
metric spacetime, the metric of which is [35]

ds2=−e2�dt2+e2�dr2+r2dθ2+r2sin2θdφ2, (13)

where �(r) and �(r) are arbitrary functions of the radial coordinate r . In such a spherically 
symmetric spacetime the contribution of spin connection vanishes [6,34]. Thus we can safely 
concentrate on flavor oscillations of neutrino and ignore possible spin flips. Another character-
istic of this spacetime is the existence of a Killing vector ∂t which corresponds to a conserved 
quantity P0=g0υP υ≡−E∞. As will be shown later, this quantity is just the energy of neutrino 
measured by an observer at r=∞.
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Without losing generality, here we consider only the radial propagation of neutrino in vacuum 
with curved spacetime, the integral element for the propagating phase is written as a function of 
proper length Eq. (80):

dτ=dl(−g00(
dx0

dτ
)2)−1/2

=dl
1

E∞e−�
,

(14)

where E∞e−� is understood as the local energy which is measured by an observer in the local 
inertial frame. e−� vanishes as r→∞, leaving E∞ only, which means it is the energy measured 
at r = ∞. The proper length Eq. (78) for radial propagation case reads

dl=
√

g11(dx1)2. (15)

Then in vacuum without the electron environment, the phase difference Eq. (6) is calculated 
as

�ji=
∫

�ji

2
dτ

=
∫

�ji

E∞e−�
e�dr.

(16)

This phase difference is exactly the same as which in the two-generation case except the labels 
i,j range from 1 to 3 now.

5. Three-generation MSW effect in curved spacetime

Using the metric Eq. (13), assuming the electron environment is at rest with respect to the 
oscillation process and choosing the tetrad to be eμ

a =diag(e−�,e−�, 1
r
, 1
r sin θ

), the self-energy 
Eq. (12) of the neutrino in environment with curved spacetime can be calculated. Then instead 
of Eq. (12) one can turn to the effective potential

Aμf =
⎛
⎜⎝

√
2e−�GF Ne(1− R

16m2
e
) 0 0

0 0 0
0 0 0

⎞
⎟⎠, (17)

where the subscript f refers to the flavor basis. It is noted that this effective potential is expanded 
in the flavor basis and diagonalized.

To calculate the phase differences, one could directly substitute Eq. (17) into Eq. (6), yet 
in general it is more convenient if we consider the effective potential as a modification to the 
masses of neutrinos and calculate the resultant mixing parameters in medium with the effec-
tive masses. Then neutrinos would behave exactly like they were in vacuum except possessing 
different masses and different mixings.

First writing the evolution relation Eq. (77) for α-flavor neutrino in the flavor basis:

|�α(r) 〉=e
−i

∫ 1
2E∞ (e�M2

f +Vf )e�dr |�α(r0) 〉 , (18)

where

M2
f =UM2

mU† (19)
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is the mass matrix in the flavor representation, which is transformed from the mass-basis mass 
matrix by the PMNS matrix. The mass matrix only appears in the phase part of the neutrino 
evolution, thus only the relative differences of the eigenvalues matter. Therefore subtracting m2

1
from the mass-basis mass matrix and using the mass differences �21, �31 as new eigenvalues 
instead of m2

1, m
2
2, m

2
3, we have

M2
m=

⎛
⎝ 0 0 0

0 �21 0
0 0 �31

⎞
⎠. (20)

The PMNS matrix is parameterized with mixing angles θ12, θ13, θ23 and a CP violating phase δ

U=
⎛
⎝ 1 0 0

0 c23 s23
0 −s23 c23

⎞
⎠

⎛
⎝ c13 0 e−iδs13

0 1 0
−e−iδs13 0 c13

⎞
⎠

⎛
⎝ c12 s12 0

−s12 c12 0
0 0 1

⎞
⎠

=
⎛
⎝ c12c13 c13s12 e−iδs13

−c23s12−eiδc12s13s23 c12c23−eiδs12s13s23 c13s23

−eiδc12c23s13+s12s23 −eiδc23s12s13−c12s23 c13c23

⎞
⎠,

(21)

where sij≡ sin θij , cij≡ cos θij . We set δ = 0 through this work.
And the electron-environmental contribution matrix Vf is written as

Vf =
⎛
⎝ v(r) 0 0

0 0 0
0 0 0

⎞
⎠, (22)

where v(r)=2
√

2e−�GF E∞Ne(1− R
16m2

e
).

Defining the effective mass matrix as

M̃2
f =(e�M2

f +Vf )e�, (23)

we obtain the three eigenvalues of the effective mass matrix

xA=2

√
l

3
cos(

1

3
arccos(

3s

2l

√
l

3
))− b

3a
, (24)

xB=2

√
l

3
cos(

1

3
arccos(

3s

2l

√
l

3
)−2π

3
)− b

3a
, (25)

xC=2

√
l

3
cos(

1

3
arccos(

3s

2l

√
l

3
)−4π

3
)− b

3a
, (26)

where the parameters a, b, c, d, s, l are defined as

a=8, (27)

b=−8v−8e��21−8e��31, (28)

c=e�(6v�21+4v�31+8e��21�31+2v�21 cos 2θ12+
v�21 cos 2 (θ12−θ13)−2v�21 cos 2θ13+4v�31 cos 2θ13+v�21 cos 2 (θ12+θ13)),

(29)

d=−8e2�v�21�31 cos θ12
2 cos θ13

2, (30)

s=2b3−9abc+27a2d

27a3
, (31)

l=−3ac−b2

3a2
. (32)



570 Y.-H. Zhang, X.-Q. Li / Nuclear Physics B 911 (2016) 563–581
It should be clarified that xA, xB, xC are the three eigenvalues of matrix (23) with the order 
xA≥xB≥xC . Thus they may not be in a sequence of m1, m2, m3, nor do they have the same values 
of the real neutrino masses due to the simplification of matrix (20). Only the values of their dif-
ferences are identical to the corresponding mass differences. Because of this ambiguity, we need 
to discuss these solutions for normal hierarchy (NH) and inverted hierarchy (IH) respectively.

For the normal hierarchy, there are

m̃2
1=xC+C,m̃2

2=xB+C,m̃2
3=xA+C, (33)

where C=m2
1 is caused by the subtraction of mass m2

1 from the mass matrix.
And so for the inverted hierarchy, we have

m̃2
3=xC+C,m̃2

1=xB+C,m̃2
2=xA+C. (34)

Solving the resonance condition for v yields

v|res=e� vf lat

∣∣
res

, (35)

where vf lat

∣∣
res

denotes the resonance condition in the Minkowski spacetime with the neutrino 
energy being Ef lat

∣∣
res

. Substituting the expression of v, it is obtained that

E∞|res=e2�(1− R

16m2
e

)−1 Ef lat

∣∣
res

. (36)

The modification to the resonance energy consists of two parts, the overall redshift with a 
factor e2� and an extra term coming from the gravitational effect on the neutrino self-energy. 
The overall redshift factor e2� obtained here is the square of the redshift factor given in [6].

5.1. Neutrino mixing parameters in celestial objects

It would be convenient to write the medium-modified mixing matrix in the same parametriza-
tion scheme as Eq. (21), then the oscillation in matter will be of the same form as the oscillation 
in vacuum.

We can define the effective phase and phase difference in medium with results obtained above 
to be

�̃j≡
∫

m̃2
j

E∞e−�
e�dr, (37)

�̃ji≡
∫

�̃ji

E∞e−�
e�dr. (38)

To calculate the mixing matrix in medium one needs the time-dependent perturbation theory 
and the evolution equation Eq. (4)

−i
∂

∂τ
Ũei�j

∣∣νj

〉=M̃2
mŨei�j

∣∣νj

〉
, (39)

where �̃ji≡m̃2
j−m̃2

i is the effective mass difference in medium. The elements of the effective 
mixing matrix obey differential equations

−i
∂

∂τ

∑
j

Ũαj=
∑
j

Vmij Ũαj e
i�̃ji . (40)
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In general it is difficult to solve for these mixing parameters analytically and in practice one 
would do it numerically. But if the environmental matter has uniform density and the first order 
derivative of metric can be neglected, Eq. (39) can be rewritten as

−i
∂

∂τ

∑
j

Ũαj e
i�̃j

∣∣νj

〉=Ũ†M̃2
mŨ

∑
j

ei�̃j
∣∣νj

〉
. (41)

Then the modified PMNS matrix reduces to be the unitary diagonalization matrix for (23) through 
the similarity relation

Ũ†M̃2
f Ũ=M̃2

m. (42)

Solving for the diagonalization matrix through the Gram–Schmidt process then applying re-
parameterization, the modified mixing angles can be calculated in either NH or IH. For NH, there 
are

N t̃2
12=

(
ρ2

AξB−ξAρAρB+σA (σAξB−ξAσB)
)2

(
ξ2
A+ρ2

A+σ 2
A

)
(σAρB−ρAσB)2

, (43)

N t̃2
13=

ξ2
A

ξ2
A+ρ2

A+σ 2
A

, (44)

N t̃2
23=

ρ2
A

σ 2
A

, (45)

where t̃2
ij≡tan2θ̃ij and N denotes normal hierarchy. Similarly, for IH it yields

I t̃2
12=

ξ2
A

(
σ 2

A

(
ξ2
B+ρ2

B

)−2ξAσAξBσB−2ρAρB (ξAξB+σAσB)+ρ2
A

(
ξ2
B+σ 2

B

)+ξ2
A

(
ρ2

B+σ 2
B

))
(
ρ2

AξB−ξAρAρB+σA (σAξB−ξAσB)
)2

,

(46)

I t̃2
13=

(σAρB−ρAσB)2

ρ2
Aξ2

A−2ξAρAξBρB+ξ2
Aρ2

B+ (σAξB−ξAσB)2
, (47)

I t̃2
23=(

σAξB−ξAσB

−ρAξB+ξAρB

)2. (48)

The parameters appearing in the above equations are defined as

ξI≡−ζ 2+(ε−xI )(η−xI ); (49)

ρI≡γ ζ+β(xI−η); (50)

σI≡βζ+γ (xI−ε), (51)

where I = A, B, C, and

α≡e�(v+e��21c
2
13s

2
12+e��31s

2
13); (52)

β≡e�+�(�21(s12c12c13c23−s2
12s13s23c13)+�31s13s23c13); (53)

γ≡e�+�(−�21(s12s23c12c13+s2
12s13c13c23)+�31s13c23c13); (54)

ε≡e�+�(�21(c12c23−s12s13s23)
2+�31s

2
23c

2
13); (55)

ζ≡e�+�(−�21(s23c12+s12s13c23)(c12c23−s12s13s23)+�31s23c
2
13c23); (56)

η≡e�+�(�21(s12s13c23+s23c12)
2+�31c

2
13c

2
23). (57)
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6. Numerical estimations

The actual structure of real celestial objects can be rather complicated and this section we 
present an explicit estimate for a toy model where the matter density is uniform. All quantities 
are written in the SI units for numerical computations. The observer is located at r = ∞.

Now let us estimate the matter effect when neutrinos travel inside a massive celestial ob-
ject. We need an interior Schwarzschild solution to describe the background spacetime. These 
solutions of the Einstein field equations are usually impossible to be explicitly written in a 
simple form but are presented numerically. For simplicity, here we apply the easiest interior 
Schwarzschild solution in which the celestial object is approximated as an isotropic, uncharged 
non-rotating perfect fluid. The metric can be evaluated using the Oppenheimer–Volkoff equation 
and the result is [35]

ds2=−(
3

2
(1−2

GM

Rc2
)1/2−1

2
(1−2

GMr2

R3c2
)1/2)2c2dt2+ 1

1− 2GMr2

R3c2

dr2+r2dθ2

+r2sin2θdφ2, (58)

where M is the mass of the celestial object through which the neutrino traverses and R is the 
radius of the object, r is the radial coordinate and r<R. To have a noticeable effect on the 
oscillation, we consider a celestial object whose radius is 102 times larger than that of the sun 
and is 106 times heavier than the sun. In this configuration the celestial object would have the 
same density as the sun. M = 106M	 ≈ 2×1036 kg, R = 102R	 ≈ 7×1010 km and ρ = ρ	 ≈
10 g/cm3 are the mass, radius and density of the celestial object, respectively.

For oscillations that take place deep inside the object, i.e. at the region where r << R, we 
obtain that

e2� ∼ 1, (59)

e2� ∼ 0.94. (60)

Recalling that ρ = (Nn+Np)mn and Ye = Ne

Nn+Np
, where mn is the mass of a nucleon, Nn and 

Np are the number densities of neutron and proton, respectively. Ye is the electron fraction and 
is approximated well as 0.5. We can write down the environmental contribution function v as

v(r)=1.518×10−13e−�E∞ρYe(1− Rh̄2

16m2
ec

2
), (61)

where the unit of v is eV and the density is written in g/cm3, the Ricci scalar has the unit 
of m−2. For the metric (58) the Ricci scalar curvature is calculated as Fig. 2 which has a nearly 
exponential dependence on r . It tends to infinity as r→0 and drops drastically as r→R. Except 
for the region of r << 1 which is the vicinity of the singularity, in most cases R is rather small 
and can be safely neglected, thus we will ignore this effect in the rest of this section.

Then it is of interest to investigate the influence imposed on the effective masses of neutrinos 
by the curved spacetime. The dependence of these masses on v is shown in Fig. 3. It can be seen 
that the redshift which is denoted by the deviation of the vertical dashed lines from the solid lines 
in the figure. At the minimum of �̃32 the redshift is only obvious in NH. Whereas, for IH at the 
minima of �̃32 and �̃21 the environmental effect v is almost the same.

Finally we would like to see the overall effect of the survival probability which may be mea-
surable. Assuming that electron neutrinos are produced in the core of this celestial object or 
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Fig. 2. Ricci scalar curvature vs. r .

Fig. 3. Mass eigenvalues in flat and curved spacetime, respectively. Above: in NH. Below: in IH. Red, blue and brown 
solid (dashed) curves denote the mass eigenvalues f m̃2

j
(cm̃2

j
) for j = 1, 2, 3 in flat (curved) spacetime, respectively. 

f and c denote flat spacetime and curved spacetime, respectively. Solid (dashed) pink vertical lines denote the positions 
of the minimum of f �̃21 (c�̃21). Solid (dashed) purple vertical lines are defined similarly except they are for f �̃32
(c�̃32) instead. Mixing angles are chosen to be θ12 = 33.48◦ and θ13 = 8.52◦ [36]. Metric is chosen so that e2� = 0.94
and e2� = 1. For illustration purpose, we have set �21 = 1 and �31 = ±10 for NH (IH). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)

traversing it, and then departing from the region of the object to propagate towards the earth. 
If theses neutrinos could be measured right after they traverse through the object the overall 
survival probability is

Qee=sin4θ̃13+cos4θ̃13(cos4θ̃12+sin4θ̃12). (62)
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Fig. 4. Survival probability after traveling through the celestial object. Above: plot range from 1 to 1010 eV. Below: 
details around the lower energy (10 MeV) oscillation region. Red and blue solid (dashed) curves denote the survival 
probability Qee in flat (curved) spacetime, respectively. Mixing parameters are chosen as θ12 = 33.48◦ , θ13 = 8.52◦ , 
θ23 = 42.2◦ , �21=7.5×10−5 eV; �31=2.5×10−3 eV for NH and �31= − 2.5×10−3 eV for IH [36]. The metric is 
chosen as e2� = 0.94 and e2� = 1. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Numerical result of Eq. (62) is plotted in Fig. 4. There the gravitational background does not 
exert any noticeable effect on the overall oscillation behaviors, but from the figure one can notice 
a tiny redshift of the resonance energies.

For higher energies, there can be a second resonance dip, while the first one occurs at about a 
few of tens MeV which is the characteristic energy of solar and supernova neutrinos. The second 
dip appears at about GeV scale and can only take place in NH. Except for this resonance, the mass 
hierarchy plays a limited role in the mixing and the probability result, thus requires experiments 
of very high precision to detect.

After the neutrino beam leaves the massive celestial object, it is supposed to freely propagate 
towards the earth and will be detected by the earth detectors, then the later stage oscillations are 
completely the regular oscillations in vacuum. Now let us consider the resultant flavor survival 
probability determined by the oscillations in the matter and the sequent vacuum. The survival 
probability is then given by

Qee=c2
12c̃

2
12c

2
13c̃

2
13+c2

13c̃
2
13s

2
12s̃

2
12+s2

13s̃
2
13, (63)

the result of which is depicted in Fig. 5. The spacetime still mainly influences the resonance 
energy with a gravitational redshift.

The resonant result indeed imposes an initial condition to the later vacuum oscillation. We 
notice that under this initial condition, for the lower energy neutrinos (about 10 MeV or below) 
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Fig. 5. Survival probability after traveling through the object and the distance between the object and the earth. Above: 
plot range from 1 to 1010 eV. Below: details around the lower energy (10 MeV) oscillation region. Red and blue solid 
(dashed) curves denote the survival probability Qee in flat (curved) spacetime, respectively. Mixing parameters are cho-
sen as θ12 = 33.48◦ , θ13 = 8.52◦ , θ23 = 42.2◦ , �21=7.5×10−5 eV, �31=2.5×10−3 for NH and �31=−2.5×10−3 eV
for IH [36]. Metric is chosen as e2� = 0.94 and e2� = 1. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

the vacuum propagation barely changes their behaviors, therefore the propagation of the beam 
from the production core to the earth is only affected by existence of the celestial matter. But by 
contrary, for the higher energy neutrinos (at GeV scale), the probability is seriously modified. 
The survival probability at this dip goes down from 0.5 to 0.3 and the upper limit of the survival 
probability could be suppressed from 1 to 0.7.

Keeping the density similar to that of the sun, the dependence of mass and radius on e2� is 
shown in Table 1. Actually, in our case, if taking e2� = 0.94, then the energy can be shifted by 
6% at most. With small mass of the celestial object the redshift would be very small. As the 
mass increases, the overall redshift increases quickly till at M = 108M	, R = 108/3R	 there is 
R ≈ Rs , where Rs is the Schwarzschild radius and Rs = 2GM

c2 . In this extreme condition the inte-
rior Schwarzschild solution we are using fails and the object collapses, yielding an unreasonable 
result.

This redshift will be much more manifest in supernovae where the density of matter can be 
as much as ∼1013 times larger than the solar density. The reason why we stick to choosing the 
solar density is that the MSW effect in the sun has been well experimentally and theoretically 
confirmed, so that we have something solid to help in making sense. For the influence of density 
on the energy of the first oscillation dip, see Table 2. It should be clarified that this work is only to 
set an upper bound on the gravitational modifications to the MSW effect. The real gravitational 
effect may be somehow different.
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Table 1
Redshift factor e2� vs. the mass and radius of the object.

M R e2�

M	 R	 0.99999
10M	 101/3R	 0.99997
103M	 10R	 0.99936
106M	 102R	 0.93678
107M	 107/3R	 0.71304
108M	 108/3R	 0.00329

Table 2
Energy of the first resonance dip vs. density of the celestial object. The mass 
of the object is selected to be 10M	 .

ρ/ρ	 10 20 30 40 50

E∞|res/eV 3.9×106 2.0×106 1.2×106 9.8×105 7.2×105

6.1. Varying density

Now let us turn to the more realistic situation in which the density profile of the celestial 
object is arbitrarily varying. In this scheme the neutrino is produced inside the object, or just 
travels through the object, then leaves the object and propagates towards the Earth and finally 
is received by detectors on the ground. The varying density of the celestial object renders the 
mixing parameters dependent on the position and time, i.e., θ̃ij→θ̃ij (ρ(r,t)). This composes a 
new degree of freedom and induces a new effect: the change of admixtures, meaning that the 
mass eigenstates 

∣∣νj

〉
are not eigenstates of propagation anymore and dependent on position and 

time. Furthermore, for a neutrino of certain energy, inside the celestial object there will exist a 
(possibly narrow) resonance layer where ρ(r,t)=ρR , with ρR being the resonance density.

Excluding dynamics of the medium, the density is only dependent on the position. Under 
these circumstances the survival probability becomes

Qee=c2
13c̃

2
13(r0)(

1

2
+(

1

2
−PC) cos 2θ12 cos 2θ̃12(r0))+s2

13s̃
2
13(r0), (64)

where PC stands for the ν1/ν2 level crossing probability and r0 is the radial coordinate of the 
initial position of neutrino.

To calculate this survival probability, one still needs to find the mixing parameters at the ini-
tial point and the metric of background spacetime. Yet if taking the density to be non-constant, 
Eqs. (41) and (58) fail and one will have to solve differential equations Eq. (4) (evolution equa-
tion) or Eq. (40) (mixing equation) and the Oppenheimer–Volkoff equation in order to obtain the 
components of each flavor or mixing parameters and the metric for the spacetime. In general it 
would be difficult solving them analytically even for linear or exponential density profiles. For 
a specific problem, it is usually only solvable via numerical methods and the results are model-
dependent.

What is more, because of the self-energy correction by gravitational filed discussed earlier in 
Sec. 3, the effective potential of neutrino acquires a dependence on the spacetime. With this new 
degree of freedom there will be new effects. The oscillation condition of MSW effect will be 
switched as
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ρ(r)=ρR→ρ(r)=ρR(r), (65)

which means the resonance density ρR is not constant anymore and there might be zero, one, 
or even multiple resonance layers in the objects, depending on specific structure of density pro-
files ρ(r) and the spacetime. Surely these effects may be fairly small if not at the vicinities of 
spacetime singularities.

7. Discussion

In this work we review the geometric treatment for neutrino oscillations in curved spacetime 
and then extend it to the three-generation cases. A discussion of the gravitational effect on neu-
trino self-energy is given and the corresponding correction to the neutrino effective potential is 
derived. Applying this method and the results, survival probabilities of oscillations in vacuum and 
the MSW effect in a general, static and spherically symmetric spacetime for the three-generation 
neutrino scenario are then calculated. For the matter effect in curved spacetime, mixing param-
eters of neutrinos are evaluated for celestial objects with constant densities, and both normal 
and inverted mass hierarchy cases are respectively discussed. In the end of this work, numerical 
results for the background of a static, isotropic interior Schwarzschild spacetime are shown in 
figures.

The modification due to the gravitational background to the neutrino self-energy Eq. (12)
implies an overall energy shift that is induced by the tetrad and an extra gravitational phase, 
however the dependence of the phase on energy is not separable from the common matter effect. 
The reason is that this phase has the same dependence on GF , Ne and E∞ as the original MSW 
effect. Thus this extra phase caused by the gravitational background and the original MSW phase 
would mix together and become indistinguishable at the energy spectrum, resulting in an overall 
redshift, even though formally this geometric-induced extra phase can be separated from the 
original propagation phase. Furthermore, this new effect is − Rh̄2

16m2
ec

2 , which is proportional to 
the Ricci scalar curvature R of the spacetime and therefore, it will vanish in the Schwarzschild 
spacetime, since in the Schwarzschild metric R = 0 and it describes a vacuum spacetime. Also, 

for this effect to be manifest we need that R∼m2
ec

2

h̄2 ∼1024 m−2, which is dramatically large and 
only possible at the vicinities of spacetime singularities.

The three-generation vacuum oscillations in curved spacetime have exactly the same form as 
their two-generation situation and all the conclusions can be generalized directly. On the other 
hand, the formulation for the MSW effect with three generations in curved spacetime becomes 
rather lengthy and require a separate discussion for normal hierarchy and inverted hierarchy. The 
major influence of gravitation is the energy redshift caused by a factor (1− Rh̄2

16m2
ec

2 )−1e2�. The 
numerical results are then given in two scenarios; matter effect only and the overall survival 
probability including the matter effect and the later stage vacuum oscillations.

The extra resonance dip of higher energy only exists in the normal mass hierarchy. Therefore 
detecting it can help solve the mass hierarchy problem. Besides this significant difference, the 
mass hierarchy also plays a role in determining the survival probability curve of neutrinos and 
the dip at lower energy, even though detecting such effect is rather difficult, if not impossible in 
the future.

For astronomical objects with varying densities, a method of calculation is offered. In curved 
spacetime there might exist zero, one or even multiple resonance layers, though these effects 
require high-precision experiments in order to detect, but actually they may become significant 
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only at the vicinities of spacetime singularities. At the present stage it would be rather difficult 
to acquire any detailed information about structures and density profiles of those celestial ob-
jects. But with these neutrino experiments we can expect to learn the structures of these celestial 
objects.

In 2016 the gravitational wave emitted from a binary black hole merger [37] was eventually 
discovered by the LIGO collaboration. One can immediately conjecture that besides the grav-
itational wave emission, the electromagnetic radiation and neutrino emission would also take 
place just like the supernova 1987A. Events at such scale, the gravitational field must play a role 
to induce local quantum effects and produce a great amount of neutrinos. The photons might 
be scattered away or absorbed by the celestial objects on the long journey to our earth which is 
much longer than the distance from Supernova 1987A to the earth, but the neutrinos should come 
along with the gravitational wave. So far, because of lacking detailed information, we cannot de-
termine the neutrino energy spectra yet. Even though the IceCube and ANTARES collaborations 
reported that they did not detect any neutrino excess accompanying the observation of gravita-
tional wave [38], it is really natural to believe that there is no reason to prohibit neutrino burst 
along with such events, so we should have received some extra neutrinos. Therefore, one may 
guess that due to unknown reasons, the neutrinos produced in the black hole merger disappear 
or somehow evade our detection. The mechanism is worth careful studies and the effects of the 
gravitational field which deforms the flat spacetime to curved are also needed to investigate. Our 
recent work is only a step towards the aim and we indeed find the curve spacetime can influence 
the neutrino propagation. We would like to emphasize that we have no intention to draw a com-
parison between the energy spectra or production mechanisms of the supernova neutrinos and 
that of the neutrinos from binary black hole merger. The two sources have completely the differ-
ent strengths of gravitational fields, thus the possibly observable effects would be different. We 
are discussing the scenarios and wish to draw researchers’ attention to the gravitational effect on 
neutrino oscillation. On other aspects, because many approximations are adopted in the study, the 
obtained results are not complete, more work is badly needed for getting a better understanding 
of mysteries of the cosmic neutrinos.
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Appendix A

In this appendix we review the geometric treatment of neutrino phase differences [6].
Any wave function of neutrino flavor eigenstates can be expanded in the space of mass eigen-

states

|�α(x, t) 〉=
∑
j

UαjT
†

∣∣νj

〉
, (66)

where α=e,μ,τ represents the three neutrino flavor eigenstates and j=1,2,3 represents the three 
mass eigenstates. Uij is the element of the PMNS matrix and T † is the spacetime evolution 
operator. Neutrino mass states are free solutions to the corresponding Dirac equations, thus they 
can be expressed as plane waves with the Minkowski metric being chosen as diag(−1, 1, 1, 1)

T †
∣∣νj

〉=eiPμxμ
∣∣νj

〉
, (67)
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where P μ=(E,P 1
j ,0,0) is the four-momentum of the neutrino whose trajectory is assumed to 

be null geodesics. The mass-shell condition is P 1
j ≈E−M2

j

2E
, where Mj is the mass operator that 

yields the mass of neutrino when acts on a neutrino state.
In curved spacetime where the neutrino travels along a null geodesic line instead of a straight 

line, Eq. (67) can be re-written as

T †
∣∣νj

〉=ei
∫

P μpμdτ
∣∣νj

〉
, (68)

where the tangent vector to the null geodesic line on which the neutrino travels is defined to be 
pμ= dxμ

dτ
with τ an affine parameter.

After modifications of wave functions, in curved spacetime the translation of Dirac equation 
is also needed. On a four dimensional, torsion-free spacetime depicted by a pseudo-Riemann 
manifold M, the Dirac equation in electron environment with metric sign (−+++) reads

γ μ(iDμ−Aμ)�+M�=0, (69)

where Aμ denotes the effective potential caused by the electron environment, the covariant 
derivative Dμ and Dirac matrices γ μ on the manifold are defined as

Dμ=∂μ+�μ, (70)

γ μ=eμ
a γ a. (71)

The spinor connection �μ, spin connection ωabμ and tetrad eμ
a are defined to be

�μ=1

8
ωabμ[γ a,γ b], (72)

ωabμ=eν
a∂μebν−eν

a�
σ
μνebσ , (73)

gμνe
μ
a eν

b=ηab. (74)

The mass shell condition (Hamilton–Jacobi equation) for neutrinos can be obtained from 
Eq. (69) as

(P μ+Aμ)(Pμ+Aμ)=−M2. (75)

Since the trajectories are null geodesics where the proper time vanishes, we cannot simply 
use the proper time as the affine parameter to build the relation between the four-momentum and 
the tangent vector. But we can still demand that P 0=p0 and the rest three spatial components 
parallel to each other. Then from Eq. (75) we obtain

P μpμ=−(
M2

2
+pμAμ). (76)

Combining Eq. (66), Eq. (68) and Eq. (76) we finally obtain the propagation of a flavor state in 
spacetime

|�α(τ) 〉=
∑
j

Uαj e
i
∫

( M2
2 +pμAμ)dτ

∣∣νj

〉
. (77)

To calculate Eq. (77), we replace the integral element with a proper length dl defined as

dl2≡gij dxidxj . (78)

Taking square root and dividing the affine parameter into it yields
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dl=(gij dxidxj )1/2=(gij

dxi

dτ

dxj

dτ
)1/2dτ. (79)

The integral element can be obtained as

dτ=dl(−g00(
dx0

dτ
)2)−1/2. (80)

From Eq. (79) to Eq. (80) we have applied the geodesic equation gμν
dxμ

dτ
dxν

dτ
=0⇒gij

dxi

dτ
dxj

dτ
=

−g00(
dx0

dτ
)2.
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