51 research outputs found

    Molecular evolution of Cide family proteins: Novel domain formation in early vertebrates and the subsequent divergence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cide family proteins including Cidea, Cideb and Cidec/Fsp27, contain an N-terminal CIDE-N domain that shares sequence similarity to the N-terminal CAD domain (NCD) of DNA fragmentation factors Dffa/Dff45/ICAD and Dffb/Dff40/CAD, and a unique C-terminal CIDE-C domain. We have previously shown that Cide proteins are newly emerged regulators closely associated with the development of metabolic diseases such as obesity, diabetes and liver steatosis. They modulate many metabolic processes such as lipolysis, thermogenesis and TAG storage in brown adipose tissue (BAT) and white adipose tissue (WAT), as well as fatty acid oxidation and lipogenesis in the liver.</p> <p>Results</p> <p>To understand the evolutionary process of Cide proteins and provide insight into the role of Cide proteins as potential metabolic regulators in various species, we searched various databases and performed comparative genomic analysis to study the sequence conservation, genomic structure, and phylogenetic tree of the CIDE-N and CIDE-C domains of Cide proteins. As a result, we identified signature sequences for the N-terminal region of Dffa, Dffb and Cide proteins and CIDE-C domain of Cide proteins, and observed that sequences homologous to CIDE-N domain displays a wide phylogenetic distribution in species ranging from lower organisms such as hydra (<it>Hydra vulgaris</it>) and sea anemone (<it>Nematostella vectensis</it>) to mammals, whereas the CIDE-C domain exists only in vertebrates. Further analysis of their genomic structures showed that although evolution of the ancestral CIDE-N domain had undergone different intron insertions to various positions in the domain among invertebrates, the genomic structure of <it>Cide </it>family in vertebrates is stable with conserved intron phase.</p> <p>Conclusion</p> <p>Based on our analysis, we speculate that in early vertebrates CIDE-N domain was evolved from the duplication of NCD of Dffa. The CIDE-N domain somehow acquired the CIDE-C domain that was formed around the same time, subsequently generating the Cide protein. Subsequent duplication and evolution have led to the formation of different Cide family proteins that play unique roles in the control of metabolic pathways in different tissues.</p

    Impact of bile acids on the growth of human cholangiocarcinoma via FXR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of the study was to investigate the effect of different types of bile acids on proliferation of cholangiocarcinoma and the potential molecular mechanisms.</p> <p>Methods</p> <p>PCR assay and Western blot were performed to detect the expression of farnesoid × receptor (FXR) in mRNA and protein level. Immunohistochemical analysis was carried out to monitor the expression of FXR in cholangiocarcinoma tissues from 26 patients and 10 normal controls. The effects on in vivo tumor growth were also studied in nude mouse model.</p> <p>Results</p> <p>Free bile acids induced an increased expression of FXR; on the contrary, the conjugated bile acids decreased the expression of FXR. The FXR effect has been illustrated with the use of the FXR agonist GW4064 and the FXR antagonist GS. More specifically, when the use of free bile acids combined with FXR agonist GW4064, the tumor cell inhibitory effect was even more pronounced. But adding FXR antagonist GS into the treatment attenuated the tumor inhibitory effect caused by free bile acids. Combined treatment of GS and CDCA could reverse the regulating effect of CDCA on the expression of FXR. Administration of CDCA and GW 4064 resulted in a significant inhibition of tumor growth. The inhibitory effect in combination group (CDCA plus GW 4064) was even more pronounced. Again, the conjugated bile acid-GDCA promoted the growth of tumor. We also found that FXR agonist GW4064 effectively blocked the stimulatory effect of GDCA on tumor growth. And the characteristic and difference of FXR expressions were in agreement with previous experimental results in mouse cholangiocarcinoma tissues. There was also significant difference in FXR expression between normal and tumor tissues from patients with cholangiocarcinoma.</p> <p>Conclusions</p> <p>The imbalance of ratio of free and conjugated bile acids may play an important role in tumorigenesis of cholangiocarcinoma. FXR, a member of the nuclear receptor superfamily, may mediate the effects induced by the bile acids.</p

    Regulation of gene expression by FSP27 in white and brown adipose tissue

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brown and white adipose tissues (BAT and WAT) play critical roles in controlling energy homeostasis and in the development of obesity and diabetes. The mouse Fat-Specific protein 27 (FSP27), a member of the cell death-inducing DFF45-like effector (CIDE) family, is expressed in both BAT and WAT and is associated with lipid droplets. Over-expression of FSP27 promotes lipid storage, whereas <it>FSP27 </it>deficient mice have improved insulin sensitivity and are resistant to diet-induced obesity. In addition, <it>FSP27</it>-deficient white adipocytes have reduced lipid storage, smaller lipid droplets, increased mitochondrial activity and a higher expression of several BAT-selective genes. To elucidate the molecular mechanism by which FSP27 controls lipid storage and gene expression in WAT and BAT, we systematically analyzed the gene expression profile of <it>FSP27-</it>deficient WAT by microarray analysis and compared the expression levels of a specific set of genes in WAT and BAT by semi-quantitative real-time PCR analysis.</p> <p>Results</p> <p>BAT-selective genes were significantly up-regulated, whereas WAT-selective genes were down-regulated in the WAT of <it>FSP27-</it>deficient mice. The expression of the BAT-selective genes was also dramatically up-regulated in the WAT of <it>leptin/FSP27 </it>double deficient mice. In addition, the expression levels of genes involved in multiple metabolic pathways, including oxidative phosphorylation, the TCA cycle, fatty acid synthesis and fatty acid oxidation, were increased in the <it>FSP27-</it>deficient WAT. In contrast, the expression levels for genes involved in extracellular matrix remodeling, the classic complement pathway and TGF-β signaling were down-regulated in the <it>FSP27-</it>deficient WAT. Most importantly, the expression levels of regulatory factors that determine BAT identity, such as CEBPα/β, PRDM16 and major components of the cAMP pathway, were markedly up-regulated in the WAT of <it>FSP27-</it>deficient mice. The expression levels of these regulatory factors were also up-regulated in <it>leptin/FSP27 </it>double deficient mice. Interestingly, distinct gene expression profiles were observed in the BAT of <it>FSP27-</it>deficient mice. Taken together, these data suggest that the WAT of <it>FSP27-</it>deficient mice have a gene expression profile similar to that of BAT.</p> <p>Conclusions</p> <p>FSP27 acts as a molecular determinant that controls gene expression for a diversity of metabolic and signaling pathways and, in particular, the expression of regulatory factors, including CEBPα/β, PRDM16 and components of the cAMP signaling pathway, that control the identity of WAT and BAT.</p

    Effects of transcranial combined with peripheral repetitive magnetic stimulation on limb spasticity and resting-state brain activity in stroke patients

    Get PDF
    Background and objectiveTranscranial magnetic stimulation and peripheral repetitive magnetic stimulation (rPMS), as non-invasive neuromodulation techniques, can promote functional recovery in patients with post-stroke spasticity (PSS), but the effects of transcranial magnetic stimulation combined with peripheral magnetic stimulation on PSS remain largely unknown. Therefore, we examined the effects of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) combined with rPMS on PSS patients and its potential neural correlates to behavioral improvements.MethodsForty-nine PSS patients were divided randomly into three groups: a combined group (n = 20), a LF-rTMS group (n = 15), and a control group (n = 14). The combined group received LF-rTMS and rPMS treatment, the rTMS group received LF-rTMS treatment, and the control group received only routine rehabilitation. All patients underwent Ashworth Spasm Scale (MAS), upper extremity Fugl-Meyer (FMA-UE), and modified Barthel Index (MBI) assessments before and after intervention. In addition, resting-state functional magnetic resonance imaging data were collected pre- and post-treatment to observe changes in the amplitude of low-frequency fluctuation (ALFF).ResultsThe MAS score was decreased, FMA-UE score and MBI scores were increased in the three groups after therapy than before therapy (all P &lt; 0.05). In particular, the combined group showed significant effect on improved motor function and relieved spasticity in PSS (P &lt; 0.01). Moreover, the combined treatment increased ALFF values mainly in the right supplementary motor area, right middle frontal gyrus, and right cerebellum, while reduced ALFF values mainly in the right post-central gyrus compared with pre-treatment. Compared with the LF-rTMS and control groups, the combined treatment increased ALFF values in the right cerebellum and reduced ALFF values mainly in the frontoparietal cortex. Improvements in the MAS score were positively correlated with the change in ALFF values in the right cerebellum (r = 0.698, P = 0.001) and the right supplementary motor area (r = 0.700, P = 0.001) after combined treatment.ConclusionTranscranial combined with peripheral repetitive magnetic stimulation could improve spastic state and motor function in PSS patients, and this effect may be associated with altered cerebellar and frontoparietal cortical activity.Clinical trial registrationhttp://www.chictr.org.cn/index.aspx, identifier ChiCTR1800019452

    Of Natural Killer cells and Hepatitis C Virus

    Get PDF
    Natural Killer (NK) cells are important effector cells in Hepatitis C Virus (HCV) infection, a virus that chronically infects around 2.5% of the world population and is a major cause of liver disease and hepatocellular carcinoma. The exact mechanisms, however, through which NK cells are activated in response to HCV remain elusive. Using the well-established HCV replicon cell-culture model we show that after co- culture of HCV replicon-carrying hepatocytes with peripheral blood mononuclear cells (PBMCs), NK cells increase expression of the high-affinity IL-2 receptor chain CD25, proliferate rapidly and produce IFN-gamma. Activation of NK cells was dependent on IL-2, most likely produced by T cells and on cell-cell contact mediated signals from monocytes. Monocytes from replicon-carrying co-cultures showed increased expression of OX40L, a member of the tumor necrosis factor family and concurrently its receptor OX40 was increased on NK cells. Blocking of OX40L in those co-cultures, as well as depletion of CD14+ monocytes abrogated the virus-induced activation and effector functions of NK cells. Together, our data reveals a novel mechanism of monocyte mediated NK cell activation against virus-infected cells involving the OX40/OX40L axis with potential relevance for therapeutic intervention by e.g. agonistic antibodies against OX40, which are already tested in cancer therapy

    Up-Regulation of Mitochondrial Activity and Acquirement of Brown Adipose Tissue-Like Property in the White Adipose Tissue of Fsp27 Deficient Mice

    Get PDF
    Fsp27, a member of the Cide family proteins, was shown to localize to lipid droplet and promote lipid storage in adipocytes. We aimed to understand the biological role of Fsp27 in regulating adipose tissue differentiation, insulin sensitivity and energy balance. Fsp27−/− mice and Fsp27/lep double deficient mice were generated and we examined the adiposity, whole body metabolism, BAT and WAT morphology, insulin sensitivity, mitochondrial activity, and gene expression changes in these mouse strains. Furthermore, we isolated mouse embryonic fibroblasts (MEFs) from wildtype and Fsp27−/− mice, followed by their differentiation into adipocytes in vitro. We found that Fsp27 is expressed in both brown adipose tissue (BAT) and white adipose tissue (WAT) and its levels were significantly elevated in the WAT and liver of leptin-deficient ob/ob mice. Fsp27−/− mice had increased energy expenditure, lower levels of plasma triglycerides and free fatty acids. Furthermore, Fsp27−/− and Fsp27/lep double-deficient mice are resistant to diet-induced obesity and display increased insulin sensitivity. Moreover, white adipocytes in Fsp27−/− mice have reduced triglycerides accumulation and smaller lipid droplets, while levels of mitochondrial proteins, mitochondrial size and activity are dramatically increased. We further demonstrated that BAT-specific genes and key metabolic controlling factors such as FoxC2, PPAR and PGC1α were all markedly upregulated. In contrast, factors inhibiting BAT differentiation such as Rb, p107 and RIP140 were down-regulated in the WAT of Fsp27−/− mice. Remarkably, Fsp27−/− MEFs differentiated in vitro show many brown adipocyte characteristics in the presence of the thyroid hormone triiodothyronine (T3). Our data thus suggest that Fsp27 acts as a novel regulator in vivo to control WAT identity, mitochondrial activity and insulin sensitivity

    Highlights to phytosterols accumulation and equilibrium in plants: Biosynthetic pathway and feedback regulation

    No full text
    Phytosterols are a group of sterols exclusive to plants and fungi, but are indispensable to humans because of their medicinal and nutritional values. However, current raw materials used for phytosterols extraction add to the cost and waste in the process. For higher sterols production, major attention is drawn to plant materials abundant in phytosterols and genetic modification. To provide an insight into phytosterols metabolism, the research progress on key enzymes involved in phytosterols biosynthesis and conversions were summarized. CAS, SSR2, SMT, DWFI and CYP710A, the enzymes participating in the biosynthetic pathway, and PSAT, ASAT and SGT, the enzymes involved in the conversion of free sterols to conjugated ones, were reviewed. Specifically, SMT and CYP710A were emphasized for their function on modulating the percentage composition of different kinds of phytosterols. The thresholds of sterol equilibrium and the resultant phytosterols accumulation, which vary in plant species and contribute to plasma membrane remodeling under stresses, were also discussed. By retrospective analysis of the previous researches, we proposed a feedback mechanism regulating sterol equilibrium underlying sterols metabolism. From a strategic perspective, we regard salt tolerant plant as an alternative to present raw materials, which will attain higher phytosterols production in combination with gene-modification
    corecore