76 research outputs found

    Robust Matrix Completion State Estimation in Distribution Systems

    Full text link
    Due to the insufficient measurements in the distribution system state estimation (DSSE), full observability and redundant measurements are difficult to achieve without using the pseudo measurements. The matrix completion state estimation (MCSE) combines the matrix completion and power system model to estimate voltage by exploring the low-rank characteristics of the matrix. This paper proposes a robust matrix completion state estimation (RMCSE) to estimate the voltage in a distribution system under a low-observability condition. Tradition state estimation weighted least squares (WLS) method requires full observability to calculate the states and needs redundant measurements to proceed a bad data detection. The proposed method improves the robustness of the MCSE to bad data by minimizing the rank of the matrix and measurements residual with different weights. It can estimate the system state in a low-observability system and has robust estimates without the bad data detection process in the face of multiple bad data. The method is numerically evaluated on the IEEE 33-node radial distribution system. The estimation performance and robustness of RMCSE are compared with the WLS with the largest normalized residual bad data identification (WLS-LNR), and the MCSE

    Load Forecasting Based Distribution System Network Reconfiguration-A Distributed Data-Driven Approach

    Full text link
    In this paper, a short-term load forecasting approach based network reconfiguration is proposed in a parallel manner. Specifically, a support vector regression (SVR) based short-term load forecasting approach is designed to provide an accurate load prediction and benefit the network reconfiguration. Because of the nonconvexity of the three-phase balanced optimal power flow, a second-order cone program (SOCP) based approach is used to relax the optimal power flow problem. Then, the alternating direction method of multipliers (ADMM) is used to compute the optimal power flow in distributed manner. Considering the limited number of the switches and the increasing computation capability, the proposed network reconfiguration is solved in a parallel way. The numerical results demonstrate the feasible and effectiveness of the proposed approach.Comment: 5 pages, preprint for Asilomar Conference on Signals, Systems, and Computers 201

    Chance-Constrained Day-Ahead Hourly Scheduling in Distribution System Operation

    Full text link
    This paper aims to propose a two-step approach for day-ahead hourly scheduling in a distribution system operation, which contains two operation costs, the operation cost at substation level and feeder level. In the first step, the objective is to minimize the electric power purchase from the day-ahead market with the stochastic optimization. The historical data of day-ahead hourly electric power consumption is used to provide the forecast results with the forecasting error, which is presented by a chance constraint and formulated into a deterministic form by Gaussian mixture model (GMM). In the second step, the objective is to minimize the system loss. Considering the nonconvexity of the three-phase balanced AC optimal power flow problem in distribution systems, the second-order cone program (SOCP) is used to relax the problem. Then, a distributed optimization approach is built based on the alternating direction method of multiplier (ADMM). The results shows that the validity and effectiveness method.Comment: 5 pages, preprint for Asilomar Conference on Signals, Systems, and Computers 201

    State Estimation in Low-Observable Distribution Systems Using Matrix Completion

    Get PDF
    The need for distribution system state estimation is on the rise because of the increased penetration of distributed energy resources and flexible load. To manage the distribution systems in real time, operators need to firstly overcome the challenge of low observability in distribution systems. Also, because of the amount of data present from smart meters, distributed generation measurements, switches, etc., the ideal distribution state estimation methods need to be able to process heterogeneous data. In this paper, an algorithm is developed for voltage phasor estimation in low-observability distribution systems. The algorithm is based on the matrix completion approach from signal processing. The traditional matrix completion formulation is augmented with power-flow constraints to improve results while requiring less data. This method can also use all types of measurements (voltage magnitude, voltage angle, real power, reactive power) to complete the state matrix

    Comprehensive Analysis Method of Acquiring Wall Heat Fluxes in Rotating Detonation Combustors

    Full text link
    Accurate perception of the combustor thermal environment is crucial for thermal protection design of a rotating detonation combustor (RDC). In this study, a comprehensive analysis method is established to calculate the non-uniform heat flux distribution of the RDC by utilizing the measured temperature distribution of the combustor outer wall obtained by the high-speed infrared thermal imager. Firstly, in order to determine the inverse heat flux solving method, a physical model based on the geometric characteristics of the RDC is constructed and its thermal conductive process is simulated, given by different heat flux boundary conditions. Then the wall heat fluxes are inversely calculated by the Levenberg-Marquardt (L-M) method based on the above numerical data. Results show that the L-M method can obtain more accurate heat flux distribution even in the zones with large heat flux gradients, considering the axial heat conduction within the combustor outer wall caused by the non-uniform heat flux. Finally, the wall heat flux distribution is analyzed coupling the L-M method together with the experimental measurements in kerosene two-phase RDC. The analyses show that the highest temperature of combustor outer surface and the highest wall heat flux occurs within the region of 20mm from the combustor head, which corresponds to nearly 14% of the combustor length. With the increase of axial distance, the heat flux is rapidly reduced, and then the heat flux distribution is more uniform at the downstream region of the combustor. The heat flux peak and thermal heat rate are positively correlated with the combustor equivalence ratio in the range between 0.44 and 0.64.Comment: 26 pages, 21 figure
    corecore