40 research outputs found

    Stochastic electron heating in the laser and quasi-static electric and magnetic fields

    Full text link
    The dynamics of relativistic electrons in the intense laser radiation and quasi-static electromagnetic fields both along and across to the laser propagating direction are studied in the 3/2 dimensional Hamiltonian framework. It is shown that the unperturbed oscillations of the relativistic electron in these electric fields could exhibit a long tail of harmonics which makes an onset of stochastic electron motion be a primary candidate for electron heating. The Poincar\'e mappings describing the electron motions in the laser and electric fields only are derived from which the criterions for instability are obtained. It follows that for both transverse and longitudinal electric fields, there exist upper limits of the stochastic electron energy depending on the laser intensity and electric field strength. Specifically, these maximum stochastic energies are enhanced by a strong laser intensity but weak electric field. Such stochastic heating would be reduced by the superluminal phase velocity in both cases. The impacts of the magnetic fields on the electron dynamics are different for these two cases and discussed qualitatively. These analytic results are confirmed by the numerical simulations of solving the 3/2D Hamiltonian equations directly

    Anomalous edge plasma transport, neutrals, and divertor plasma detachment

    Full text link
    An impact of neutrals on anomalous edge plasma transport and zonal flow (ZF) is considered. As an example, it is assumed that edge plasma turbulence is driven by the resistive drift wave (RDW) instability. It is found that the actual effect of neutrals is not related to a suppression of the instability \textit{per se}, but due to an impact on the ZF. Particularly, it is shown that, whereas the neutrals make very little impact on the linear growth rate of the RDW instability, they can largely reduce the zonal flow generation in the nonlinear stage, which results in an enhancement of the overall anomalous plasma transport. Even though only RDW instability is considered, it seems that such an impact of neutrals on anomalous edge plasma transport has a very generic feature. It is conceivable that such neutral induced enhancement of anomalous plasma transport is observed experimentally in a detached divertor regime, which is accompanied by a strong increase of neutral density

    On the collisional damping of plasma velocity space instabilities

    Full text link
    For plasma velocity space instabilities driven by particle distributions significantly deviated from a Maxwellian, weak collisions can damp the instabilities by an amount that is significantly beyond the collisional rate itself. This is attributed to the dual role of collisions that tend to relax the plasma distribution toward a Maxwellian and to suppress the linearly perturbed distribution function. The former effect can dominate in cases where the unstable non-Maxwellian distribution is driven by collisionless transport on a time scale much shorter than that of collisions, and the growth rate of the ideal instability has a sensitive dependence on the distribution function. The whistler instability driven by electrostatically trapped electrons is used as an example to elucidate such a strong collisional damping effect of plasma velocity space instabilities, which is confirmed by first-principles kinetic simulations

    Electron heat flux and propagating fronts in plasma thermal quench via ambipolar transport

    Full text link
    The thermal collapse of a nearly collisionless plasma interacting with a cooling spot, in which the electron parallel heat flux plays an essential role, is investigated both theoretically and numerically. We show that such thermal collapse, which is known as thermal quench in tokamaks, comes about in the form of propagating fronts, originating from the cooling spot, along the magnetic field lines. The slow fronts, propagating with local ion sound speed, limit the aggressive cooling of plasma, which is accompanied by a plasma cooling flow toward the cooling spot. The extraordinary physics underlying such a cooling flow is that the fundamental constraint of ambipolar transport along the field line limits the spatial gradient of electron thermal conduction flux to the much weaker convective scaling, as opposed to the free-streaming scaling, so that a large electron temperature and hence pressure gradient can be sustained. The last ion front for a radiative cooling spot is a shock front where cold but flowing ions meet the hot ions

    Resolving the mystery of electron perpendicular temperature spike in the plasma sheath

    Full text link
    A large family of plasmas has collisional mean-free-path much longer than the non-neutral sheath width, which scales with the plasma Debye length. The plasmas, particularly the electrons, assume strong temperature anisotropy in the sheath. The temperature in the sheath flow direction (TeT_{e\parallel}) is lower and drops towards the wall as a result of the decompressional cooling by the accelerating sheath flow. The electron temperature in the transverse direction of the flow field (TeT_{e\perp}) not only is higher but also spikes up in the sheath. This abnormal behavior of TeT_{e\perp} spike is found to be the result of a negative gradient of the parallel heat flux of transverse degrees of freedom (qesq_{es}) in the sheath. The non-zero heat flux qesq_{es} is induced by pitch-angle scattering of electrons via either their interaction with self-excited electromagnetic waves in a nearly collisionless plasma or Coulomb collision in a collisional plasma, or both in the intermediate regime of plasma collisionality

    Staged cooling of a fusion-grade plasma in a tokamak thermal quench

    Full text link
    In tokamak disruptions where the magnetic connection length becomes comparable to or even shorter than the plasma mean-free-path, parallel transport can dominate the energy loss and the thermal quench of the core plasma goes through four phases (stages) that have distinct temperature ranges and durations. The main temperature drop occurs while the core plasma remains nearly collisionless, with the parallel electron temperature TeT_{e\parallel} dropping in time tt as Tet2T_{e\parallel}\propto t^{-2} and a cooling time that scales with the ion sound wave transit time over the length of the open magnetic field line. These surprising physics scalings are the result of effective suppression of parallel electron thermal conduction in an otherwise bounded collisionless plasma, which is fundamentally different from what are known to date on electron thermal conduction along the magnetic field in a nearly collisionless plasma
    corecore