71 research outputs found

    Negative to Positive Crossover of Magnetoresistance in Layered WS2 with Ohmic Contact

    Full text link
    The discovery of graphene has ignited intensive investigation on two dimensional (2D) materials. Among them, transition metal dichalcogenide (TMDC), a typical representative, attracts much attention due to the excellent performance in field effect transistor (FET) related measurements and applications. Particularly, when TMDC eventually reaches few-layer dimension, a wide range of electronic and optical properties, in striking contrast to bulk samples, are detected. In this Letter, we synthesized single crystalline WS2 nanoflakes by physical vapor deposition (PVD) method and carried out a series of transport measurements of contact resistance and magnetoresistance. Focused ion beam (FIB) technology was applied to deposit Pt electrodes on WS2 flakes. Different from the electron beam lithography (EBL) fabricated electrodes, FIB-deposited leads exhibited ohmic contact, resolving the dilemma of Schottky barrier. Furthermore, a temperature-modulated negative-to-positive transition of magnetoresistance (MR) associated with a crossover of carrier type at similar temperature was demonstrated. Our work offers a pathway to optimize the contact for TMDC and reveals the magnetoresistance characteristics of WS2 flakes, which may stimulate further studies on TMDC and corresponding potential electronic and optoelectronic applications

    A New Luminous blue variable in the outskirt of the Andromeda Galaxy

    Get PDF
    The hot massive luminous blue variables (LBVs) represent an important evolutionary phase of massive stars. Here, we report the discovery of a new LBV -- LAMOST J0037+4016 in the distant outskirt of the Andromeda galaxy. It is located in the south-western corner (a possible faint spiral arm) of M31 with an unexpectedly large projection distance of \sim 22 kpc from the center. The optical light curve shows a 1.2 mag variation in VV band and its outburst and quiescence phases both last over several years. The observed spectra indicate an A-type supergiant at epoch close to the outburst phase and a hot B-type supergiant with weak [Fe II] emission lines at epoch of much dimmer brightness. The near-infrared color-color diagram further shows it follows the distribution of Galactic and M31 LBVs rather than B[e] supergiants. All the existing data strongly show that LAMOST J0037+4016 is an LBV. By spectral energy distribution fitting, we find it has a luminosity (4.42±1.644.42 \pm 1.64)×105\times 10^5 LL_{\odot} and an initial mass 30\sim 30 MM_{\odot}, indicating its nature of less luminosity class of LBV.Comment: 7 pages, 4 figures, 3 tables, accepted by ApJ

    Observation of Quantum Griffiths Singularity and Ferromagnetism at Superconducting LaAlO3/SrTiO3(110) Interface

    Full text link
    Diverse phenomena emerge at the interface between band insulators LaAlO3 and SrTiO3, such as superconductivity and ferromagnetism, showing an opportunity for potential applications as well as bringing fundamental research interests. Particularly, the two-dimensional electron gas formed at LaAlO3/SrTiO3 interface offers an appealing platform for quantum phase transition from a superconductor to a weakly localized metal. Here we report the superconductor-metal transition in superconducting two-dimensional electron gas formed at LaAlO3/SrTiO3(110) interface driven by a perpendicular magnetic field. Interestingly, when approaching the quantum critical point, the dynamic critical exponent is not a constant but a diverging value, which is a direct evidence of quantum Griffiths singularity raised from quenched disorder at ultralow temperatures. Furthermore, the hysteretic property of magnetoresistance was firstly observed at LaAlO3/SrTiO3(110) interfaces, which suggests potential coexistence of superconductivity and ferromagnetism

    Ising Superconductivity and Quantum Phase Transition in Macro-Size Monolayer NbSe2

    Full text link
    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have a range of unique physics properties and could be used in the development of electronics, photonics, spintronics and quantum computing devices. The mechanical exfoliation technique of micro-size TMD flakes has attracted particular interest due to its simplicity and cost effectiveness. However, for most applications, large area and high quality films are preferred. Furthermore, when the thickness of crystalline films is down to the 2D limit (monolayer), exotic properties can be expected due to the quantum confinement and symmetry breaking. In this paper, we have successfully prepared macro-size atomically flat monolayer NbSe2 films on bilayer graphene terminated surface of 6H-SiC(0001) substrates by molecular beam epitaxy (MBE) method. The films exhibit an onset superconducting critical transition temperature above 6 K, 2 times higher than that of mechanical exfoliated NbSe2 flakes. Simultaneously, the transport measurements at high magnetic fields reveal that the parallel characteristic field Bc// is at least 4.5 times higher than the paramagnetic limiting field, consistent with Zeeman-protected Ising superconductivity mechanism. Besides, by ultralow temperature electrical transport measurements, the monolayer NbSe2 film shows the signature of quantum Griffiths singularity when approaching the zero-temperature quantum critical point

    Based on the Foot–Ground Contact Mechanics Model and Velocity Planning Buffer Control

    No full text
    In order to reduce the impact of the leg joint motors and body electric devices of a falling robot, active flexible control based on force and velocity is proposed. A velocity planning buffer method based on a virtual model is proposed. We established a mechanical model of leg and ground contact. Then, we controlled the knee joint angular velocity change after the robot contacted the ground to reduce the collision impact force and to protect the robot’s joint motors and body’s internal parts. First, the relationship between contact force and velocity was analyzed through the contact mechanical model between leg and ground, and the target was determined. Then, by planning the velocity of the robot’s thigh and hip joint, the velocity mutation during contact was reduced so that the impact on the robot was reduced. This method can avoid complex accurate physics model building and complex torque signal interference filtering processing, the control process is simple and its effectiveness is verified by ADAMS simulation and experimental verification. The velocity planning buffer strategy was tested in experimental studies which showed that the contact force of the buffer strategy was 0.671 times that of no buffer. Additionally, the contact impact acceleration of velocity planning was 1.5505 g, which was less than the force 1.7 g of virtual model control. The velocity planning buffer strategy was better to protect the robot

    Based on the Foot–Ground Contact Mechanics Model and Velocity Planning Buffer Control

    No full text
    In order to reduce the impact of the leg joint motors and body electric devices of a falling robot, active flexible control based on force and velocity is proposed. A velocity planning buffer method based on a virtual model is proposed. We established a mechanical model of leg and ground contact. Then, we controlled the knee joint angular velocity change after the robot contacted the ground to reduce the collision impact force and to protect the robot’s joint motors and body’s internal parts. First, the relationship between contact force and velocity was analyzed through the contact mechanical model between leg and ground, and the target was determined. Then, by planning the velocity of the robot’s thigh and hip joint, the velocity mutation during contact was reduced so that the impact on the robot was reduced. This method can avoid complex accurate physics model building and complex torque signal interference filtering processing, the control process is simple and its effectiveness is verified by ADAMS simulation and experimental verification. The velocity planning buffer strategy was tested in experimental studies which showed that the contact force of the buffer strategy was 0.671 times that of no buffer. Additionally, the contact impact acceleration of velocity planning was 1.5505 g, which was less than the force 1.7 g of virtual model control. The velocity planning buffer strategy was better to protect the robot

    Entropic Interactions in Semiflexible Polymer Nanocomposite Melts

    No full text
    By employing molecular dynamics simulations, we explored the effective depletion zone for nanoparticles (NP) immersed in semiflexible polymer melts and calculated the entropic depletion interactions between a pair of NPs in semiflexible polymer nanocomposite melts. The average depletion zone volumes rely mainly on polymer chain stiffness and increase with chain stiffness increasing. In the semiflexible polymer nanocomposite melts, the entropic depletion interactions are attractive and anisotropic, and increase with chain stiffness increasing. Meanwhile, the attractive interactions between NPs and polymers can also affect strongly the entropic depletion interactions. For the semiflexible polymer nanocomposite melts in the athermal system, the entropic depletion interactions change from anisotropic to isotropic when the NP/polymer interactions increase. For NPs in the rodlike polymer melts, a mixture structure of contact/“bridging” aggregations for NPs is formed at a strong attractive NP/polymer interaction. Our calculations can provide an effective framework to predict the morphology of NPs immersed in semiflexible polymer melts
    corecore