818 research outputs found

    A Survey of Foreign Students’ Cross-cultural Adaptation in Chongqing Normal University—A Case Study of Sri Lankan Students

    Get PDF
    Cross-cultural adaptation research is an important part of study for foreign students. With theories of Searle & Ward and John W. Berry, mainly from two aspects: psychological adaptation and social-cultural adaptation, the research investigates Sri Lankan students’ cross-cultural adaptation in Chongqing Normal University and analyzes the problems of Sri Lankan students’ cross-cultural adaptation in Chongqing Normal University in four aspects: Chinese reading and vocabulary, communication and exchange, adaptation of learning and teaching styles and knowledge of Chinese culture. Combined with the survey and problems of Sri Lankan students’ adaptation, the research will be used to give relevant suggestions to help Sri Lankan students adapt Chinese culture better

    Ultrasonic Atomization of pMDI Wood Resin

    Get PDF
    A novel, patent-pending approach to the application of wood resins based on an ultrasonic principle was developed in this study. Liquid polymeric methane diphenyl-diisocyanate (pMDI) resin was successfully atomized using a bench-scale 25 kHz ultrasonic atomizer. The optimal average sizes of the resin droplets generated at a flow rate of 0.7 mL/min and power input of 5.0 J/s were about 90 ÎĽm. In addition to fewer fine droplets than that produced by conventional spinning-disk atomizers, the droplets of pMDI resin produced by the ultrasonic atomizer had a more uniform droplet size distribution. These results indicate the potential advantages of implementing ultrasonic atomization in oriented strandboard production, including elimination of the hazardous fraction of fine resin droplets and potential production cost savings from improved resin efficiency. The ultrasonic atomization of wood resins appears to be a promising alternative to the spinning-disk atomizer

    The Development of Biomimetic Spherical Hydroxyapatite/Polyamide 66 Biocomposites as Bone Repair Materials

    Get PDF
    A novel biomedical material composed of spherical hydroxyapatite (s-HA) and polyamide 66 (PA) biocomposite (s-HA/PA) was prepared, and its composition, mechanical properties, and cytocompatibility were characterized and evaluated. The results showed that HA distributed uniformly in the s-HA/PA matrix. Strong molecule interactions and chemical bonds were presented between the s-HA and PA in the composites confirmed by IR and XRD. The composite had excellent compressive strength in the range between 95 and 132 MPa, close to that of natural bone. In vitro experiments showed the s-HA/PA composite could improve cell growth, proliferation, and differentiation. Therefore, the developed s-HA/PA composites in this study might be used for tissue engineering and bone repair

    Involvement of Human Papillomaviruses in Cervical Cancer

    Get PDF
    Human papillomaviruses (HPV) are the first viruses to have been acknowledged to prompt carcinogenesis, and they are linked with cancers of the uterine cervix, anogenital tumors, and head and neck malignancies. This paper examines the structure and primary genomic attributes of HPV and highlights the clinical participation of the primary HPV serotypes, focusing on the roles that HPV-16 and 18 play in carcinogenesis. The mechanisms that take place in the progression of cervical neoplasia are described. The oncogenic proteins E6 and E7 disrupt control of the cell cycle by their communication with p53 and retinoblastoma protein. Epidemiological factors, diagnostic tools, and management of the disease are examined in this manuscript, as are the vaccines currently marketed to protect against viral infection. We offer insights into ongoing research on the roles that oxidative stress and microRNAs play in cervical carcinogenesis since such studies may lead to novel methods of diagnosis and treatment. Several of these topics are surfacing as being critical for future study. One particular area of importance is the study of the mechanisms involved in the modulation of infection and cancer development at cervical sites. HPV-induced cancers may be vulnerable to immune therapy, offering the chance to treat advanced cervical disease. We propose that oxidative stress, mRNA, and the mechanisms of HPV infection will be critical points for HPV cancer research over the next decade

    Notoginsenoside R1 Protects Against Diabetic Cardiomyopathy Through Activating Estrogen Receptor α and Its Downstream Signaling

    Get PDF
    Diabetic cardiomyopathy (DCM) leads to heart failure and death in diabetic patients, no effective treatment is available. Notoginsenoside R1 (NGR1) is a novel saponin that is derived from Panax notoginseng and our previous studies have showed cardioprotective and neuroprotective effects of NGR1. However, its role in protecting against DCM remains unexplored. Herein, we examine potential effects of NGR1 on cardiac function of diabetic db/db mice and H9c2 cardiomyocytes treated by advanced glycation end products (AGEs). In vitro experiments revealed that pretreatment with NGR1 significantly decreased AGEs-induced mitochondria injury, limited an increase in ROS, and reduced apoptosis in H9c2 cells. NGR1 eliminated ROS by promoting estrogen receptor α expression, which subsequently activated Akt and Nrf2-mediated anti-oxidant enzymes. In vivo investigation demonstrated that NGR1 significantly reduced serum lipid levels, insulin resistance, the expression of enzymes related to cardiomyopathy, and the expression of apoptotic proteins. Finally, NGR1 improved cardiac dysfunction and attenuated histological abnormalities, as evidenced by elevating ejection fraction and fractional shortening, and reducing cardiac fibrosis. Mechanistically, NGR1 promoted ERα expression, which led to the activation of Akt-Nrf2 signaling and the inhibition of the TGFβ pathway. Collectively, these results strongly indicate that NGR1 exerts cardioprotective effects against DCM through its inhibition of oxidative stress and apoptosis, and eventually suppresses cardiac fibrosis and hypertrophy, which suggests that NGR1 is a potential therapeutic medicine for the treatment of DCM

    Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly(dimethylsiloxane) membranes under elastic deformation

    Get PDF
    We study structural symmetries of two-dimensional (2D) photonic crystals with anisotropic unit cells, including square- and rectangular-lattices with orientationally modulated elliptic motifs, and a compound structure consisting of circles with sixfold rotational symmetry and elliptical lines with twofold symmetry, which are created through elastic deformation of a single elastomeric membrane with circular pores. We then investigate the photonic bandgap (PBG) properties of the corresponding 2D Si posts and their tolerance to the structural deviation. We find that in the compound structure the overall PBGs are dominated by the sublattice with a higher symmetry, while the total symmetry is determined by the one with a lower symmetry

    A robust optimisation model for hybrid remanufacturing and manufacturing systems under uncertain return quality and market demand

    Get PDF
    In remanufacturing research, most researchers predominantly emphasised on the recovery of whole product (core) rather than at the component level due to its complexity. In contrast, this paper addresses the challenges to focus on remanufacturing through component recovery, so as to solve production planning problems of hybrid remanufacturing and manufacturing systems. To deal with the uncertainties of quality and quantity of product returns, the processing time of remanufacturing, remanufacturing costs, as well as market demands, a robust optimisation model was developed in this research and a case study was used to evaluate its effectiveness and efficiency. To strengthen this research, a sensitivity analysis of the uncertain parameters and the original equipment manufacturer’s (OEM’s) pricing strategy was also conducted. The research finding shows that the market demand volatility leads to a significant increase in the under fulfilment and a reduction in OEM’s profit. On the other hand, recovery cost reduction, as endogenous cost saving, encourages the OEM to produce more remanufactured products with the increase in market demand. Furthermore, the OEM may risk profit loss if they raise the price of new products, and inversely, they could gain more if the price of remanufactured products is raised
    • …
    corecore