72,044 research outputs found

    PPM1D phosphatase, a target of p53 and RBM38 RNA-binding protein, inhibits p53 mRNA translation via dephosphorylation of RBM38.

    Get PDF
    PPM1D phosphatase, also called wild-type p53-induced phosphatase 1, promotes tumor development by inactivating the p53 tumor suppressor pathway. RBM38 RNA-binding protein, also called RNPC1 and a target of p53, inhibits p53 messenger RNA (mRNA) translation, which can be reversed by GSK3 protein kinase via phosphorylation of RBM38 at serine 195. Here we showed that ectopic expression of RBM38 increases, whereas knockdown of RBM38 inhibits, PPM1D mRNA translation. Consistent with this, we found that RBM38 directly binds to PPM1D 3'-untranslated region (3'-UTR) and promotes expression of a heterologous reporter gene that carries PPM1D 3'-UTR in a dose-dependent manner. Interestingly, we showed that PPM1D directly interacts with and dephosphorylates RBM38 at serine 195. Furthermore, we showed that PPM1D modulates p53 mRNA translation and p53-dependent growth suppression through dephosphorylation of RBM38. These findings provide evidence that the crosstalk between PPM1D and RBM38, both of which are targets and modulators of p53, has a critical role in p53 expression and activity

    Light Fan Driven by a Relativistic Laser Pulse

    Get PDF
    When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or “light fan.” Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density

    What if pulsars are born as strange stars?

    Full text link
    The possibility and the implications of the idea, that pulsars are born as strange stars, are explored. Strange stars are very likely to have atmospheres with typical mass of 5×1015M\sim 5\times 10^{-15}M_\odot but bare polar caps almost throughout their lifetimes, if they are produced during supernova explosions. A direct consequence of the bare polar cap is that the binding energies of both positively and negatively charged particles at the bare quark surface are nearly infinity, so that the vacuum polar gap sparking scenario as proposed by Ruderman & Sutherland should operate above the cap, regardless of the sense of the magnetic pole with respect to the rotational pole. Heat can not accumulate on the polar cap region due to the large thermal conductivity on the bare quark surface. We test this ``bare polar cap strange star'' (BPCSS) idea with the present broad band emission data of pulsars, and propose several possible criteria to distinguish BPCSSs from neutron stars.Comment: 31 pages in Latex. Accepted by AstroParticle Physic

    Continuous cyclic mechanical tension increases ank expression in endplate chondrocytes through the TGF-β1 and p38 pathway

    Get PDF
    The normal ANK protein has a strong influence on anti-calcification. It is known that TGF-β1 is also able to induce extracellular inorganic pyrophosphate (ePPi) elaboration via the TGF-β1-induced ank gene expression and the mitogen-activated protein kinase (MAPK) signaling acts as a downstream effector of TGF-β1. We hypothesized that the expression of the ank gene is regulated by mechanics through TGF-β1-p38 pathway. In this study, we investigated the mechanism of short-time mechanical tension-induced ank gene expression. We found that the continuous cyclic mechanical tension (CCMT) increased the ank gene expression in the endplate chondrocytes, and there was an increase in the TGF-β1 expression after CCMT stimulation. The ank gene expression significantly increased when treated by TGF-β1 in a dose-dependent manner and decreased when treated by SB431542 (ALK inhibitor) in a dose-dependent manner. Our study results indicate that CCMT-induced ank gene expressions may be regulated by TGF-β1 and p38 MAPK pathway

    2D association and integrative omics analysis in rice provides systems biology view in trait analysis.

    Get PDF
    The interactions among genes and between genes and environment contribute significantly to the phenotypic variation of complex traits and may be possible explanations for missing heritability. However, to our knowledge no existing tool can address the two kinds of interactions. Here we propose a novel linear mixed model that considers not only the additive effects of biological markers but also the interaction effects of marker pairs. Interaction effect is demonstrated as a 2D association. Based on this linear mixed model, we developed a pipeline, namely PATOWAS. PATOWAS can be used to study transcriptome-wide and metabolome-wide associations in addition to genome-wide associations. Our case analysis with real rice recombinant inbred lines (RILs) at three omics levels demonstrates that 2D association mapping and integrative omics are able to provide a systems biology view into the analyzed traits, leading toward an answer about how genes, transcripts, proteins, and metabolites work together to produce an observable phenotype
    corecore