98 research outputs found

    A Category Classification Based Safety Risk Assessment Method for Railway Wagon Loading Status

    Get PDF
    The identification and control of safety risks in the loading state of goods wagon is one of the important tasks to ensure the safety of goods in transit. In view of the problem that the current risk assessment of transportation schemes is mainly based on manual experience and cannot be quantified, which makes it difficult to accurately determine the safety risk of transportation on the way, a risk assessment method for loading status of goods wagon based on scenario classification was proposed. Firstly, based on a detailed analysis of the safety risk points in various stages of railway freight operations, a SHEL influencing factor model based on scenario classification was constructed. Then, considering the characteristics of railway freight transportation, a fuzzy accident tree model (FTA) of goods wagon loading state risk was constructed, and the fault tree was transformed into a Bayesian network structure according to the mapping algorithm of fuzzy fault tree and Bayesian. Furthermore, a triangular fuzzy membership function was introduced to describe the fault probability of nodes, and a BN based fuzzy fault tree inference algorithm was proposed. Finally, taking a railway station and route transporting coil steel goods in China as an example, this paper explained how to integrate expert knowledge through fault tree and Bayesian network to support railway freight scheme designers in conducting risk quantification assessment of freight wagon loading status

    Consensus Graph Representation Learning for Better Grounded Image Captioning

    Full text link
    The contemporary visual captioning models frequently hallucinate objects that are not actually in a scene, due to the visual misclassification or over-reliance on priors that resulting in the semantic inconsistency between the visual information and the target lexical words. The most common way is to encourage the captioning model to dynamically link generated object words or phrases to appropriate regions of the image, i.e., the grounded image captioning (GIC). However, GIC utilizes an auxiliary task (grounding objects) that has not solved the key issue of object hallucination, i.e., the semantic inconsistency. In this paper, we take a novel perspective on the issue above - exploiting the semantic coherency between the visual and language modalities. Specifically, we propose the Consensus Rraph Representation Learning framework (CGRL) for GIC that incorporates a consensus representation into the grounded captioning pipeline. The consensus is learned by aligning the visual graph (e.g., scene graph) to the language graph that consider both the nodes and edges in a graph. With the aligned consensus, the captioning model can capture both the correct linguistic characteristics and visual relevance, and then grounding appropriate image regions further. We validate the effectiveness of our model, with a significant decline in object hallucination (-9% CHAIRi) on the Flickr30k Entities dataset. Besides, our CGRL also evaluated by several automatic metrics and human evaluation, the results indicate that the proposed approach can simultaneously improve the performance of image captioning (+2.9 Cider) and grounding (+2.3 F1LOC).Comment: 9 pages, 5 figures, AAAI 202

    Learning in Imperfect Environment: Multi-Label Classification with Long-Tailed Distribution and Partial Labels

    Full text link
    Conventional multi-label classification (MLC) methods assume that all samples are fully labeled and identically distributed. Unfortunately, this assumption is unrealistic in large-scale MLC data that has long-tailed (LT) distribution and partial labels (PL). To address the problem, we introduce a novel task, Partial labeling and Long-Tailed Multi-Label Classification (PLT-MLC), to jointly consider the above two imperfect learning environments. Not surprisingly, we find that most LT-MLC and PL-MLC approaches fail to solve the PLT-MLC, resulting in significant performance degradation on the two proposed PLT-MLC benchmarks. Therefore, we propose an end-to-end learning framework: \textbf{CO}rrection \rightarrow \textbf{M}odificat\textbf{I}on \rightarrow balan\textbf{C}e, abbreviated as \textbf{\method{}}. Our bootstrapping philosophy is to simultaneously correct the missing labels (Correction) with convinced prediction confidence over a class-aware threshold and to learn from these recall labels during training. We next propose a novel multi-focal modifier loss that simultaneously addresses head-tail imbalance and positive-negative imbalance to adaptively modify the attention to different samples (Modification) under the LT class distribution. In addition, we develop a balanced training strategy by distilling the model's learning effect from head and tail samples, and thus design a balanced classifier (Balance) conditioned on the head and tail learning effect to maintain stable performance for all samples. Our experimental study shows that the proposed \method{} significantly outperforms general MLC, LT-MLC and PL-MLC methods in terms of effectiveness and robustness on our newly created PLT-MLC datasets

    IDEAL: Toward High-efficiency Device-Cloud Collaborative and Dynamic Recommendation System

    Full text link
    Recommendation systems have shown great potential to solve the information explosion problem and enhance user experience in various online applications, which recently present two emerging trends: (i) Collaboration: single-sided model trained on-cloud (separate learning) to the device-cloud collaborative recommendation (collaborative learning). (ii) Real-time Dynamic: the network parameters are the same across all the instances (static model) to adaptive network parameters generation conditioned on the real-time instances (dynamic model). The aforementioned two trends enable the device-cloud collaborative and dynamic recommendation, which deeply exploits the recommendation pattern among cloud-device data and efficiently characterizes different instances with different underlying distributions based on the cost of frequent device-cloud communication. Despite promising, we argue that most of the communications are unnecessary to request the new parameters of the recommendation system on the cloud since the on-device data distribution are not always changing. To alleviate this issue, we designed a Intelligent DEvice-Cloud PArameter Request ModeL (IDEAL) that can be deployed on the device to calculate the request revenue with low resource consumption, so as to ensure the adaptive device-cloud communication with high revenue. We envision a new device intelligence learning task to implement IDEAL by detecting the data out-of-domain. Moreover, we map the user's real-time behavior to a normal distribution, the uncertainty is calculated by the multi-sampling outputs to measure the generalization ability of the device model to the current user behavior. Our experimental study demonstrates IDEAL's effectiveness and generalizability on four public benchmarks, which yield a higher efficient device-cloud collaborative and dynamic recommendation paradigm

    Variational Cross-Graph Reasoning and Adaptive Structured Semantics Learning for Compositional Temporal Grounding

    Full text link
    Temporal grounding is the task of locating a specific segment from an untrimmed video according to a query sentence. This task has achieved significant momentum in the computer vision community as it enables activity grounding beyond pre-defined activity classes by utilizing the semantic diversity of natural language descriptions. The semantic diversity is rooted in the principle of compositionality in linguistics, where novel semantics can be systematically described by combining known words in novel ways (compositional generalization). However, existing temporal grounding datasets are not carefully designed to evaluate the compositional generalizability. To systematically benchmark the compositional generalizability of temporal grounding models, we introduce a new Compositional Temporal Grounding task and construct two new dataset splits, i.e., Charades-CG and ActivityNet-CG. When evaluating the state-of-the-art methods on our new dataset splits, we empirically find that they fail to generalize to queries with novel combinations of seen words. We argue that the inherent structured semantics inside the videos and language is the crucial factor to achieve compositional generalization. Based on this insight, we propose a variational cross-graph reasoning framework that explicitly decomposes video and language into hierarchical semantic graphs, respectively, and learns fine-grained semantic correspondence between the two graphs. Furthermore, we introduce a novel adaptive structured semantics learning approach to derive the structure-informed and domain-generalizable graph representations, which facilitate the fine-grained semantic correspondence reasoning between the two graphs. Extensive experiments validate the superior compositional generalizability of our approach.Comment: arXiv admin note: substantial text overlap with arXiv:2203.1304

    Revisiting the Domain Shift and Sample Uncertainty in Multi-source Active Domain Transfer

    Full text link
    Active Domain Adaptation (ADA) aims to maximally boost model adaptation in a new target domain by actively selecting a limited number of target data to annotate.This setting neglects the more practical scenario where training data are collected from multiple sources. This motivates us to target a new and challenging setting of knowledge transfer that extends ADA from a single source domain to multiple source domains, termed Multi-source Active Domain Adaptation (MADA). Not surprisingly, we find that most traditional ADA methods cannot work directly in such a setting, mainly due to the excessive domain gap introduced by all the source domains and thus their uncertainty-aware sample selection can easily become miscalibrated under the multi-domain shifts. Considering this, we propose a Dynamic integrated uncertainty valuation framework(Detective) that comprehensively consider the domain shift between multi-source domains and target domain to detect the informative target samples. Specifically, the leverages a dynamic Domain Adaptation(DA) model that learns how to adapt the model's parameters to fit the union of multi-source domains. This enables an approximate single-source domain modeling by the dynamic model. We then comprehensively measure both domain uncertainty and predictive uncertainty in the target domain to detect informative target samples using evidential deep learning, thereby mitigating uncertainty miscalibration. Furthermore, we introduce a contextual diversity-aware calculator to enhance the diversity of the selected samples. Experiments demonstrate that our solution outperforms existing methods by a considerable margin on three domain adaptation benchmarks.Comment: arXiv admin note: text overlap with arXiv:2302.13824 by other author

    Dilated Context Integrated Network with Cross-Modal Consensus for Temporal Emotion Localization in Videos

    Full text link
    Understanding human emotions is a crucial ability for intelligent robots to provide better human-robot interactions. The existing works are limited to trimmed video-level emotion classification, failing to locate the temporal window corresponding to the emotion. In this paper, we introduce a new task, named Temporal Emotion Localization in videos~(TEL), which aims to detect human emotions and localize their corresponding temporal boundaries in untrimmed videos with aligned subtitles. TEL presents three unique challenges compared to temporal action localization: 1) The emotions have extremely varied temporal dynamics; 2) The emotion cues are embedded in both appearances and complex plots; 3) The fine-grained temporal annotations are complicated and labor-intensive. To address the first two challenges, we propose a novel dilated context integrated network with a coarse-fine two-stream architecture. The coarse stream captures varied temporal dynamics by modeling multi-granularity temporal contexts. The fine stream achieves complex plots understanding by reasoning the dependency between the multi-granularity temporal contexts from the coarse stream and adaptively integrates them into fine-grained video segment features. To address the third challenge, we introduce a cross-modal consensus learning paradigm, which leverages the inherent semantic consensus between the aligned video and subtitle to achieve weakly-supervised learning. We contribute a new testing set with 3,000 manually-annotated temporal boundaries so that future research on the TEL problem can be quantitatively evaluated. Extensive experiments show the effectiveness of our approach on temporal emotion localization. The repository of this work is at https://github.com/YYJMJC/Temporal-Emotion-Localization-in-Videos.Comment: Accepted by ACM Multimedia 202

    De-fine: Decomposing and Refining Visual Programs with Auto-Feedback

    Full text link
    Visual programming, a modular and generalizable paradigm, integrates different modules and Python operators to solve various vision-language tasks. Unlike end-to-end models that need task-specific data, it advances in performing visual processing and reasoning in an unsupervised manner. Current visual programming methods generate programs in a single pass for each task where the ability to evaluate and optimize based on feedback, unfortunately, is lacking, which consequentially limits their effectiveness for complex, multi-step problems. Drawing inspiration from benders decomposition, we introduce De-fine, a general framework that automatically decomposes complex tasks into simpler subtasks and refines programs through auto-feedback. This model-agnostic approach can improve logical reasoning performance by integrating the strengths of multiple models. Our experiments across various visual tasks show that De-fine creates more accurate and robust programs, setting new benchmarks in the field

    Gradient-Regulated Meta-Prompt Learning for Generalizable Vision-Language Models

    Full text link
    Prompt tuning, a recently emerging paradigm, enables the powerful vision-language pre-training models to adapt to downstream tasks in a parameter -- and data -- efficient way, by learning the ``soft prompts'' to condition frozen pre-training models. Though effective, it is particularly problematic in the few-shot scenario, where prompt tuning performance is sensitive to the initialization and requires a time-consuming process to find a good initialization, thus restricting the fast adaptation ability of the pre-training models. In addition, prompt tuning could undermine the generalizability of the pre-training models, because the learnable prompt tokens are easy to overfit to the limited training samples. To address these issues, we introduce a novel Gradient-RegulAted Meta-prompt learning (GRAM) framework that jointly meta-learns an efficient soft prompt initialization for better adaptation and a lightweight gradient regulating function for strong cross-domain generalizability in a meta-learning paradigm using only the unlabeled image-text pre-training data. Rather than designing a specific prompt tuning method, our GRAM can be easily incorporated into various prompt tuning methods in a model-agnostic way, and comprehensive experiments show that GRAM brings about consistent improvement for them in several settings (i.e., few-shot learning, cross-domain generalization, cross-dataset generalization, etc.) over 11 datasets. Further, experiments show that GRAM enables the orthogonal methods of textual and visual prompt tuning to work in a mutually-enhanced way, offering better generalizability beyond the uni-modal prompt tuning methods.Comment: Accepted by ICCV 202
    corecore