155 research outputs found

    Optical observations of a SN 2002cx-like peculiar supernova SN 2013en in UGC 11369

    Get PDF
    We present optical observations of a SN 2002cx-like supernova SN 2013en in UGC 11369, spanning from a phase near maximum light (t= +1 d) to t= +60 d with respect to the R-band maximum. Adopting a distance modulus of mu=34.11 +/- 0.15 mag and a total extinction (host galaxy+Milky Way) of AV∼1.5A_V \sim1.5 mag, we found that SN 2013en peaked at M(R)∼−18.6M(R)\sim -18.6 mag, which is underluminous compared to the normal SNe Ia. The near maximum spectra show lines of Si II, Fe II, Fe III, Cr II, Ca II and other intermediate-mass and iron group elements which all have lower expansion velocities (i.e., ~ 6000 km/s). The photometric and spectroscopic evolution of SN 2013en is remarkably similar to those of SN 2002cx and SN 2005hk, suggesting that they are likely to be generated from a similar progenitor scenario or explosion mechanism.Comment: 8 pages, 8 figures, 3 tables, accepted for publication in MNRA

    The Progenitor of Supernova 2004dj in a Star Cluster

    Full text link
    The progenitor of type II-plateau supernova (SN) 2004dj is identified with a supergiant in a compact star cluster known as "Sandage Star 96" (S96) in the nearby spiral galaxy NGC 2403, which was fortuitously imaged as part of the Beijing-Arizona-Taiwan-Connecticut (BATC) Multicolor Sky Survey from Feb 1995 to Dec 2003 prior to SN 2004dj. The superior photometry of BATC images for S96, taken with 14 intermediate-band filters covering 3000-10000\AA, unambiguously establishes the star cluster nature of S96 with an age of ∼20\sim 20Myr, a reddening of E(B−V)∼0.35\hbox{E}(B-V)\sim 0.35 mag and a total mass of ∼96,000\sim 96,000M⊙_{\odot}. The compact star cluster nature of S96 is also consistent with the lack of light variations in the past decade. The SN progenitor is estimated to have a main-sequence mass of ∼\sim12M⊙_{\odot}. The comparison of our intermediate-band data of S96 with the post-outburst photometry obtained as the SN has significantly dimmed, may hopefully conclusively establish the nature of the progenitor.Comment: 4 pages; 3 figures. To accept for Publications in ApJ Letters, but slightly longer in this perprin

    Photometry of Variable Stars from THU-NAOC Transient Survey I: The First 2 Years

    Get PDF
    In this paper, we report the detections of stellar variabilities from the first 2-year observations of sky area of about 1300 square degrees from the Tsinghua University-NAOC Transient Survey (TNTS). A total of 1237 variable stars (including 299 new ones) were detected with brightness < 18.0 mag and magnitude variation >= 0.1 mag on a timescale from a few hours to few hundred days. Among such detections, we tentatively identified 661 RR Lyrae stars, 431 binaries, 72 Semiregular pulsators, 29 Mira stars, 11 slow irregular variables, 11 RS Canum Venaticorum stars, 7 Gamma Doradus stars, 5 long period variables, 3 W Virginis stars, 3 Delta Scuti stars, 2 Anomalous Cepheids, 1 Cepheid, and 1 nove-like star based on their time-series variability index Js and their phased diagrams. Moreover, we found that 14 RR Lyrae stars show the Blazhko effect and 67 contact eclipsing binaries exhibit the O'Connell effect. Since the period and amplitude of light variations of RR Lyrae variables depend on their chemical compositions, their photometric observations can be used to investigate distribution of metallicity along the direction perpendicular to the Galactic disk. We find that the metallicity of RR Lyrae stars shows large scatter at regions closer to the Galactic plane (e.g., -3.0 < [Fe/H] < 0) but tends to converge at [Fe/H]~ -1.7 at larger Galactic latitudes. This variation may be related to that the RRAB Lyrae stars in the Galactic halo come from globular clusters with different metallicity and vertical distances, i.e. OoI and OoII populations, favoring for the dual-halo model.Comment: 18 pages, 19 figures, published in AJ, 150, 10

    Revealing the Biexciton and Trion-exciton Complexes in BN Encapsulated WSe2

    Full text link
    Strong Coulomb interactions in single-layer transition metal dichalcogenides (TMDs) result in the emergence of strongly bound excitons, trions and biexcitons. These excitonic complexes possess the valley degree of freedom, which can be exploited for quantum optoelectronics. However, in contrast to the good understanding of the exciton and trion properties, the binding energy of the biexciton remains elusive, with theoretical calculations and experimental studies reporting discrepant results. In this work, we resolve the conflict by employing low-temperature photoluminescence spectroscopy to identify the biexciton state in BN encapsulated single-layer WSe2. The biexciton state only exists in charge neutral WSe2, which is realized through the control of efficient electrostatic gating. In the lightly electron-doped WSe2, one free electron binds to a biexciton and forms the trion-exciton complex. Improved understanding of the biexciton and trion-exciton complexes paves the way for exploiting the many-body physics in TMDs for novel optoelectronics applications
    • …
    corecore