3 research outputs found

    3-Cinnamoyl-4-hydroxy-6-methyl-2H-pyran-2-one ameliorates diabetic peripheral neuropathy in type 2 diabetes mellitus rats via PI3K/Akt signaling pathway

    Get PDF
    Purpose: To investigate the curative effects of 3-cinnamoyl-4-hydroxy-6-methyl-2H-pyran-2-one (CHMP) on streptozotocin (STZ)-induced model of diabetic SD rats, and the underlying mechanism. Method: Diabetes was induced in rats using single intraperitoneal injection of STZ. Subsequently, diabetic and non-diabetic rats were randomly grouped into five experimental groups. Six weeks after the STZ-injection, the diabetic animals were orally administered test compound (CHMP) at two doses of 10 and 20 mg/kg body weight for 6 weeks. Thereafter, the rats were anesthetised, and body weight, blood sugar, and motor nerve conduction velocity (MNCV) were determined. Moreover, real time-polymerase chain reaction (RT-PCR) and western blot analysis were used to assay the expression levels of genes in PIK3/Akt pathway and Glut4. Results: Treatment of diabetic rats with CHMP significantly reduced levels of fasting blood glucose and enhanced average rat body weight, relative to diabetic control (p ˂ 0.05). Motor nerve conduction velocity (MNCV) was remarkably increased in CHMP-treated rats (54.2 ± 2.2), when compared to the diabetic control rats (46 ± 4.1, p < 0.01). Results from RT-PCR and western blot indicated increased expressions of PI3K, Akt and IRS-1, and down regulation of GSK-3B expression in skeletal muscle. The CHMP treatment also upregulated the Glut4 expression in skeletal muscle. Conclusion: These findings show that CHMP may be beneficial in the management of diabetic neuropath

    Comprehensive landscape-style investigation of the molecular mechanism of acupuncture at ST36 single acupoint on different systemic diseases

    No full text
    The principle of acupoint stimulation efficacy is based on traditional meridian theory. However, the molecular mechanisms underlying the therapeutic effects of acupoints in treating diseases remain unclear in modern scientific understanding. In this study, we selected the ST36 acupoint for investigation and summarized all relevant literature from the PubMed database over the past 10 years. The results indicate that stimulation of ST36 single acupoints has therapeutic effects mainly in models of respiratory, neurological, digestive, endocrine and immune system diseases. And it can affect the inflammatory state, oxidative stress, respiratory mucus secretion, intestinal flora, immune cell function, neurotransmitter transmission, hormone secretion, the network of Interstitial Cells of Cajal (ICC) and glucose metabolism of the organism in these pathological states. Among them, acupuncture at the ST36 single point has the most prominent function in regulating the inflammatory state, which can mainly affect the activation of MAPK signaling pathway and drive the ''molecular-cellular'' mode involving macrophages, T-lymphocytes, mast cells (MCs) and neuroglial cells as the core to trigger the molecular level changes of the acupuncture point locally or in the target organ tissues, thereby establishing a multi-system, multi-target, multi-level molecular regulating mechanism. This article provides a comprehensive summary and discussion of the molecular mechanisms and effects of acupuncture at the ST36 acupoint, laying the groundwork for future in-depth research on acupuncture point theory
    corecore