127,095 research outputs found

    Chiral geometry and rotational structure for 130^{130}Cs in the projected shell model

    Get PDF
    The projected shell model with configuration mixing for nuclear chirality is developed and applied to the observed rotational bands in the chiral nucleus 130^{130}Cs. For the chiral bands, the energy spectra and electromagnetic transition probabilities are well reproduced. The chiral geometry illustrated in the K plotK~plot and the azithumal plotazithumal~plot is confirmed to be stable against the configuration mixing. The other rotational bands are also described in the same framework

    Low-lying states in even Gd isotopes studied with five-dimensional collective Hamiltonian based on covariant density functional theory

    Full text link
    Five-dimensional collective Hamiltonian based on the covariant density functional theory has been applied to study the the low-lying states of even-even 148−162^{148-162}Gd isotopes. The shape evolution from 148^{148}Gd to 162^{162}Gd is presented. The experimental energy spectra and intraband B(E2)B(E2) transition probabilities for the 148−162^{148-162}Gd isotopes are reproduced by the present calculations. The relative B(E2)B(E2) ratios in present calculations are also compared with the available interacting boson model results and experimental data. It is found that the occupations of neutron 1i13/21i_{13/2} orbital result in the well-deformed prolate shape, and are essential for Gd isotopes.Comment: 11pages, 10figure
    • …
    corecore