311 research outputs found

    Critical exponents of a multicomponent anisotropic t-J model in one dimension

    Full text link
    A recently presented anisotropic generalization of the multicomponent supersymmetric tJt-J model in one dimension is investigated. This model of fermions with general spin-SS is solved by Bethe ansatz for the ground state and the low-lying excitations. Due to the anisotropy of the interaction the model possesses 2S2S massive modes and one single gapless excitation. The physical properties indicate the existence of Cooper-type multiplets of 2S+12S+1 fermions with finite binding energy. The critical behaviour is described by a c=1c=1 conformal field theory with continuously varying exponents depending on the particle density. There are two distinct regimes of the phase diagram with dominating density-density and multiplet-multiplet correlations, respectively. The effective mass of the charge carriers is calculated. In comparison to the limit of isotropic interactions the mass is strongly enhanced in general.Comment: 10 pages, 3 Postscript figures appended as uuencoded compressed tar-file to appear in Z. Phys. B, preprint Cologne-94-474

    Exact thermodynamics of an Extended Hubbard Model of single and paired carriers in competition

    Get PDF
    By exploiting the technique of Sutherland's species, introduced in \cite{DOMO-RC}, we derive the exact spectrum and partition function of a 1D extended Hubbard model. The model describes a competition between dynamics of single carriers and short-radius pairs, as a function of on-site Coulomb repulsion (UU) and filling (ρ\rho). We provide the temperature dependence of chemical potential, compressibility, local magnetic moment, and specific heat. In particular the latter turns out to exhibit two peaks, both related to `charge' degrees of freedom. Their origin and behavior are analyzed in terms of kinetic and potential energy, both across the metal-insulator transition point and in the strong coupling regime.Comment: 14 pages, 15 eps figure

    Exact diagonalization of the generalized supersymmetric t-J model with boundaries

    Full text link
    We study the generalized supersymmetric tJt-J model with boundaries in three different gradings: FFB, BFF and FBF. Starting from the trigonometric R-matrix, and in the framework of the graded quantum inverse scattering method (QISM), we solve the eigenvalue problems for the supersymmetric tJt-J model. A detailed calculations are presented to obtain the eigenvalues and Bethe ansatz equations of the supersymmetric tJt-J model with boundaries in three different backgrounds.Comment: Latex file, 32 page

    η\eta-pairing as a mechanism of superconductivity in models of strongly correlated electrons

    Full text link
    We consider extended versions of the Hubbard model which contain additional interactions between nearest neighbours. In this letter we show that a large class of these models has a superconducting ground state in arbitrary dimensions. In some special cases we are able to find the complete phase diagram. The superconducting phase exist even for moderate repulsive values of the Hubbard interaction UU.Comment: 9 pages, RevTex, ITP-SB-94-18, 1 PS figure appende

    Contributions to the cross shock electric field at supercritical perpendicular shocks: Impact of the pickup ions

    Full text link
    A particle-in-cell code is used to examine contributions of the pickup ions (PIs) and the solar wind ions (SWs) to the cross shock electric field at the supercritical, perpendicular shocks. The code treats the pickup ions self-consistently as a third component. Herein, two different runs with relative pickup ion density of 25% and 55% are presented in this paper. Present preliminary results show that: (1) in the low percentage (25%) pickup ion case, the shock front is nonstationary. During the evolution of this perpendicular shock, a nonstationary foot resulting from the reflected solar wind ions is formed in front of the old ramp, and its amplitude becomes larger and larger. At last, the nonstationary foot grows up into a new ramp and exceeds the old one. Such a nonstationary process can be formed periodically. hen the new ramp begins to be formed in front of the old ramp, the Hall term mainly contributed by the solar wind ions becomes more and more important. The electric field Ex is dominated by the Hall term when the new ramp exceeds the old one. Furthermore, an extended and stationary foot in pickup ion gyro-scale is located upstream of the nonstationary/self-reforming region within the shock front, and is always dominated by the Lorentz term contributed by the pickup ions; (2) in the high percentage (55%) pickup ion case, the amplitude of the stationary foot is increased as expected. One striking point is that the nonstationary region of the shock front evidenced by the self-reformation disappears. Instead, a stationary extended foot dominated by Lorentz term contributed by the pickup ions, and a tationary ramp dominated by Hall term contributed by the solar wind ions are clearly evidenced. The significance of the cross electric field on ion dynamics is also discussed.Comment: 11 pages, 6 figs and 1 table. This paper will be published in the journal: Astrophysics and Space Scienc

    The Strength–Grain Size Relationship in Ultrafine-Grained Metals

    Full text link

    HighP–TNano-Mechanics of Polycrystalline Nickel

    Get PDF
    We have conducted highP–Tsynchrotron X-ray and time-of-flight neutron diffraction experiments as well as indentation measurements to study equation of state, constitutive properties, and hardness of nanocrystalline and bulk nickel. Our lattice volume–pressure data present a clear evidence of elastic softening in nanocrystalline Ni as compared with the bulk nickel. We show that the enhanced overall compressibility of nanocrystalline Ni is a consequence of the higher compressibility of the surface shell of Ni nanocrystals, which supports the results of molecular dynamics simulation and a generalized model of a nanocrystal with expanded surface layer. The analytical methods we developed based on the peak-profile of diffraction data allow us to identify “micro/local” yield due to high stress concentration at the grain-to-grain contacts and “macro/bulk” yield due to deviatoric stress over the entire sample. The graphic approach of our strain/stress analyses can also reveal the corresponding yield strength, grain crushing/growth, work hardening/softening, and thermal relaxation under highP–Tconditions, as well as the intrinsic residual/surface strains in the polycrystalline bulks. From micro-indentation measurements, we found that a low-temperature annealing (T < 0.4 Tm) hardens nanocrystalline Ni, leading to an inverse Hall–Petch relationship. We explain this abnormal Hall–Petch effect in terms of impurity segregation to the grain boundaries of the nanocrystalline Ni
    corecore