301 research outputs found

    Controlling sequential hybrid evolutionary algorithm by Q-learning

    Get PDF
    Many state-of-the-art evolutionary algoritahms (EAs) can be categorized as sequential hybrid EAs, in which various EAs are sequentially executed. The timing to switch from one EA to another is critical to the performance of the hybrid EA because the switching time determines the allocation of computational resources and thereby it helps balance exploration and exploitation. In this article, a framework for adaptive parameter control for hybrid EAs is proposed, in which the switching time is controlled by a learned agent rather than a manually designed scheme. First the framework is applied to an adaptive differential evolution algorithm, LSHADE, to control when to use the scheme to reduce the population. Then the framework is applied to the algorithm that won the CEC 2018 competition, i.e., the hybrid sampling evolution strategy (HSES), to control when to switch from the univariate sampling phase to the Covariance Matrix Adaptation Evolution Straategy phase. The agents for parameter control in LSHADE and HSES are trained by using Q-learning and deep Q-learning to obtain the learned algorithms Q-LSHADE and DQ-HSES. The results of experiments on the CEC 2014 and 2018 test suites show that the learned algorithms significantly outperform their counterparts and some state-of-the-art EAs.Algorithms and the Foundations of Software technolog

    Entangled quantum heat engines based on two two-spin systems with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

    Full text link
    We construct an entangled quantum heat engine (EQHE) based on two two-spin systems with Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction. By applying the explanations of heat transferred and work performed at the quantum level in Kieu's work [PRL, 93, 140403 (2004)], the basic thermodynamic quantities, i.e., heat transferred, net work done in a cycle and efficiency of EQHE are investigated in terms of DM interaction and concurrence. The validity of the second law of thermodynamics is confirmed in the entangled system. It is found that there is a same efficiency for both antiferromagnetic and ferromagnetic cases, and the efficiency can be controlled in two manners: 1. only by spin-spin interaction J and DM interaction D; 2. only by the temperature T and concurrence C. In order to obtain a positive net work, we need not entangle all qubits in two two-spin systems and we only require the entanglement between qubits in a two-spin system not be zero. As the ratio of entanglement between qubits in two two-spin systems increases, the efficiency will approach infinitely the classical Carnot one. An interesting phenomenon is an abrupt transition of the efficiency when the entanglements between qubits in two two-spin systems are equal

    Low energy and dynamical properties of a single hole in the t-Jz model

    Full text link
    We review in details a recently proposed technique to extract information about dynamical correlation functions of many-body hamiltonians with a few Lanczos iterations and without the limitation of finite size. We apply this technique to understand the low energy properties and the dynamical spectral weight of a simple model describing the motion of a single hole in a quantum antiferromagnet: the tJzt-J_z model in two spatial dimension and for a double chain lattice. The simplicity of the model allows us a well controlled numerical solution, especially for the two chain case. Contrary to previous approximations we have found that the single hole ground state in the infinite system is continuously connected with the Nagaoka fully polarized state for Jz0J_z \to 0. Analogously we have obtained an accurate determination of the dynamical spectral weight relevant for photoemission experiments. For Jz=0J_z=0 an argument is given that the spectral weight vanishes at the Nagaoka energy faster than any power law, as supported also by a clear numerical evidence. It is also shown that spin charge decoupling is an exact property for a single hole in the Bethe lattice but does not apply to the more realistic lattices where the hole can describe closed loop paths.Comment: RevTex 3.0, 40 pages + 16 Figures in one file self-extracting, to appear in Phys. Rev

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-

    Full text link
    We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi --> D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7 J/Psi events collected with the BESII detector at the BEPC. No excess of signal above background is observed, and 90% confidence level upper limits on the branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi --> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Measurements of psi(2S) decays to octet baryon-antibaryon pairs

    Get PDF
    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.Comment: 8 pages, 8 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM

    Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons

    Full text link
    The branching fractions for the inclusive Cabibbo-favored ~K*0 and Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with the BES-II detector at the BEPC collider. The branching fractions for the decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 -> \~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X) < 6.6%

    Study of J/ψωK+KJ/\psi \to \omega K^+K^-

    Get PDF
    New data are presented on J/ψωK+KJ/\psi \to \omega K^+K^- from a sample of 58M J/ψJ/\psi events in the upgraded BES II detector at the BEPC. There is a conspicuous signal for f0(1710)K+Kf_0(1710) \to K^+K^- and a peak at higher mass which may be fitted with f2(2150)KKˉf_2(2150) \to K\bar K. From a combined analysis with ωπ+π\omega \pi ^+ \pi ^- data, the branching ratio BR(f0(1710)ππ)/BR(f0(1710)KKˉ)BR(f_0(1710)\to\pi\pi)/BR(f_0(1710) \to K\bar K) is <0.11< 0.11 at the 95% confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
    corecore