201,429 research outputs found

    Green's function method for single-particle resonant states in relativistic mean field theory

    Full text link
    Relativistic mean field theory is formulated with the Green's function method in coordinate space to investigate the single-particle bound states and resonant states on the same footing. Taking the density of states for free particle as a reference, the energies and widths of single-particle resonant states are extracted from the density of states without any ambiguity. As an example, the energies and widths for single-neutron resonant states in 120^{120}Sn are compared with those obtained by the scattering phase-shift method, the analytic continuation in the coupling constant approach, the real stabilization method and the complex scaling method. Excellent agreements are found for the energies and widths of single-neutron resonant states.Comment: 20 pages, 7 figure

    Control of beam propagation in optically written waveguides beyond the paraxial approximation

    Full text link
    Beam propagation beyond the paraxial approximation is studied in an optically written waveguide structure. The waveguide structure that leads to diffractionless light propagation, is imprinted on a medium consisting of a five-level atomic vapor driven by an incoherent pump and two coherent spatially dependent control and plane-wave fields. We first study propagation in a single optically written waveguide, and find that the paraxial approximation does not provide an accurate description of the probe propagation. We then employ coherent control fields such that two parallel and one tilted Gaussian beams produce a branched waveguide structure. The tilted beam allows selective steering of the probe beam into different branches of the waveguide structure. The transmission of the probe beam for a particular branch can be improved by changing the width of the titled Gaussian control beam as well as the intensity of the spatially dependent incoherent pump field.Comment: 10 pages, 9 figure

    (1S)-1-phenylethanaminium 4-{[(1S,2S)-1-hydroxy-2,3-dihydro-1H,1'H-[2,2'-biinden]-2-yl]methyl}benzoate

    Get PDF
    Copyright 2012 © International Union of Crystallography.The title molecular salt, C8H12N+·C26H21O3-, contains a dimeric indane pharmacophore that demonstrates potent anti-inflammatory activity. The indane group of the anion exhibits some disorder about the [alpha]-C atom, which appears common to many structures containing this group. A model to account for the slight disorder was attempted, but this was deemed unsuccessful because applying bond-length constraints to all the bonds about the [alpha]-C atom led to instability in the refinement. The absolute configuration was determined crystallographically as S,S,S by anomalous dispersion methods with reference to both the Flack parameter and Bayesian statistics on Bijvoet differences. The configuration was also determined by an a priori knowledge of the absolute configuration of the (1S)-1-phenylethanaminium counter-ion. The molecules pack in the crystal structure to form an infinite two-dimensional hydrogen-bond network in the (100) plane of the unit cell

    Vibration Modes and the Dynamic Behaviour of a Hydraulic Plunger Pump

    Full text link
    © 2016 Tianxiao Zhang and Nong Zhang. Mechanical vibrations and flow fluctuation give rise to complex interactive vibration mechanisms in hydraulic pumps. The working conditions for a hydraulic pump are therefore required to be improved in the design stage or as early as possible. Considering the structural features, parameters, and operating environment of a hydraulic plunger pump, the vibration modes for two-degree-of-freedom system were established by using vibration theory and hydraulic technology. Afterwards, the analytical form of the natural frequency and the numerical solution of the steady-state response were deduced for a hydraulic plunger pump. Then, a method for the vibration analysis of a hydraulic pump was proposed. Finally, the dynamic responses of a hydraulic plunger pump are obtained through numerical simulation

    Single-particle and Interaction Effects on the Cohesion and Transport and Magnetic Properties of Metal Nanowires at Finite Voltages

    Full text link
    The single-particle and interaction effects on the cohesion, electronic transport, and some magnetic properties of metallic nanocylinders have been studied at finite voltages by using a generalized mean-field electron model. The electron-electron interactions are treated in the self-consistent Hartree approximation. Our results show the single-particle effect is dominant in the cohesive force, while the nonzero magnetoconductance and magnetotension coefficients are attributed to the interaction effect. Both single-particle and interaction effects are important to the differential conductance and magnetic susceptibility.Comment: 5 pages, 6 figure

    Tunable near- to mid-infrared pump terahertz probe spectroscopy in reflection geometry

    Full text link
    Strong-field mid-infrared pump--terahertz (THz) probe spectroscopy has been proven as a powerful tool for light control of different orders in strongly correlated materials. We report the construction of an ultrafast broadband infrared pump--THz probe system in reflection geometry. A two-output optical parametric amplifier is used for generating mid-infrared pulses with GaSe as the nonlinear crystal. The setup is capable of pumping bulk materials at wavelengths ranging from 1.2 μ\mum to 15 μ\mum and beyond, and detecting the subtle, transient photoinduced changes in the reflected electric field of the THz probe at different temperatures. As a demonstration, we present 15 μ\mum pump--THz probe measurements of a bulk EuSbTe3_{3} single crystal. A 0.5%0.5\% transient change in the reflected THz electric field can be clearly resolved. The widely tuned pumping energy could be used in mode-selective excitation experiments and applied to many strongly correlated electron systems.Comment: 4 pages, 4 figure

    Kilohertz QPO Frequency and Flux Decrease in AQL X-1 and Effect of Soft X-ray Spectral Components

    Full text link
    We report on an RXTE/PCA observation of Aql X-1 during its outburst in March 1997 in which, immediately following a Type-I burst, the broad-band 2-10 keV flux decreased by about 10% and the kilohertz QPO frequency decreased from 813+-3 Hz to 776+-4 Hz. This change in kHz QPO frequency is much larger than expected from a simple extrapolation of a frequency-flux correlation established using data before the burst. Meanwhile a very low frequency noise (VLFN) component in the broad-band FFT power spectra with a fractional root-mean-square (rms) amplitude of 1.2% before the burst ceased to exist after the burst. All these changes were accompanied by a change in the energy spectral shape. If we characterize the energy spectra with a model composed of two blackbody (BB) components and a power law component, almost all the decrease in flux was in the two BB components. We attribute the two BB components to the contributions from a region very near the neutron star or even the neutron star itself and from the accretion disk, respectively.Comment: 12 pages with 4 figures, accepted for publication in ApJ Letters, typos corrected and references update
    corecore