391 research outputs found

    Sensorless Control of a Ferrite PM Assisted-Synchronous Reluctance Machines by Using Sliding Mode Observer and High Frequency Signal Injection

    Get PDF
    This paper presents sensorless control of ferrite permanent magnet-assisted synchronous reluctance machines (FPMA-SynRM) over wide speed range by using sliding mode observer (SMO) and high frequency signal injection. The basic equation of sliding mode observer will be derived based on dynamic model of PMSynRM. In the study, the equivalent of EMF-based SMO is proposed to estimate rotor position at medium and high speed range. The principles of high frequency signal injection, digital signal processing and rotor polarity identification is also analysed. Finally, the theoretical analysis have been verified with the experiments and the results obtained show that the resolution of estimated position signal can meet requirements of some industrial drive applications

    Empirical research on the evaluation model and method of sustainability of the open source ecosystem

    Get PDF
    The development of open source brings new thinking and production modes to software engineering and computer science, and establishes a software development method and ecological environment in which groups participate. Regardless of investors, developers, participants, and managers, they are most concerned about whether the Open Source Ecosystem can be sustainable to ensure that the ecosystem they choose will serve users for a long time. Moreover, the most important quality of the software ecosystem is sustainability, and it is also a research area in Symmetry. Therefore, it is significant to assess the sustainability of the Open Source Ecosystem. However, the current measurement of the sustainability of the Open Source Ecosystem lacks universal measurement indicators, as well as a method and a model. Therefore, this paper constructs an Evaluation Indicators System, which consists of three levels: The target level, the guideline level and the evaluation level, and takes openness, stability, activity, and extensibility as measurement indicators. On this basis, a weight calculation method, based on information contribution values and a Sustainability Assessment Model, is proposed. The models and methods are used to analyze the factors affecting the sustainability of Stack Overflow (SO) ecosystem. Through the analysis, we find that every indicator in the SO ecosystem is partaking in different development trends. The development trend of a single indicator does not represent the sustainable development trend of the whole ecosystem. It is necessary to consider all of the indicators to judge that ecosystem’s sustainability. The research on the sustainability of the Open Source Ecosystem is helpful for judging software health, measuring development efficiency and adjusting organizational structure. It also provides a reference for researchers who study the sustainability of software engineering

    Environmental Factors Influencing the Durability of Concrete Structures in Maine Environments

    Get PDF
    Concrete structures built in marine environment may suffer serious durability problems. Focusing on the reaction between concrete materials and environmental conditions on structural durability, the coefficients of environmental temperature and chloride content are established. Referring to only experimental data tested following the procedure similar to the regulations in NT Build 443(Concrete, Hardened: Accelerated Chloride Penetration) of North Europe, the relationship between D28 and water/binder ratio, which are converted into equivalent values of a standard reference environmental condition at 20ºC and a concentration of 165 g ± 1 g NaCl per dm3 solution, using the established formula of coefficients of environmental temperature and chloride content, is presented. The converted results of different environmental conditions at laboratory and natural environment have a good agreement with each other, which indicates that the coefficients of environmental temperature and chloride content are reasonably determined. The ratio of wetting time per-period defined as the time proportion of concrete in wet conditions to the whole time period can be used to describe the dry-wet conditions in concrete. Analysis on the in-situ detected results shows that the penetration of chloride, the accumulation of surface chloride concentration and the decay of chloride diffusion coefficient are all related to the ratio of wetting time per-period. Subsequently, the formula of apparent chloride diffusion coefficient is proposed with consideration of surrounding temperature, sodium chloride solution concentration, age factor and altitude

    Structure and photoluminescence properties of red-emitting apatite-type phosphor NaY9(SiO4)6O2:Sm3+ with excellent quantum efficiency and thermal stability for solid-state lighting.

    Get PDF
    A novel red-emitting phosphor NaY9(SiO4)6O2:Sm3+ (NYS:Sm3+) was synthesized and the X-ray diffraction and high-resolution TEM testified that the NYS compound belongs to the apatite structure which crystallized in a hexagonal unit cell with space group P63/m. The novel phosphor boasts of such three advantageous properties as perfect compatible match with the commercial UV chips, 73.2% quantum efficiency and 90.9% thermal stability at 150 °C. Details are as follows. NYS:Sm3+ phosphor showed obvious absorption in the UV regions centered at 407 nm, which can be perfectly compatible with the commercial UV chips. The property investigations showed that NYS:Sm3+ phosphor emitted reddish emission with CIE coordination of (0.563, 0.417). The optimum quenching concentration of Sm3+ in NYS phosphor was about 10%mol, and the corresponding concentration quenching mechanism was verified to be the electric dipole-dipole interaction. Upon excitation at 407 nm, the composition-optimized NYS:0.10Sm3+ exhibited a high quantum efficiency of 73.2%, and its luminescence intensity at 150 °C decreased simply to 90.9% of the initial value at room temperature. All of the results indicated that NYS:Sm3+ is a promising candidate as a reddish-emitting UV convertible phosphor for application in white light emitting diodes (w-LEDs)

    Wheel Running Improves Motor Function and Spinal Cord Plasticity in Mice With Genetic Absence of the Corticospinal Tract

    Get PDF
    Our previous studies showed that mutant mice with congenital absence of the corticospinal tract (CST) undergo spontaneous remodeling of motor networks to partially compensate for absent CST function. Here, we asked whether voluntary wheel running could further improve locomotor plasticity in CST-deficient mice. Adult mutant mice were randomly allocated to a “runners” group with free access to a wheel, or a “non-runners” group with no access to a wheel. In comparison with non-runners, there was a significant motor improvement including fine movement, grip strength, decreased footslip errors in runners after 8-week training, which was supported by the elevated amplitude of electromyography recording and increased neuromuscular junctions in the biceps. In runners, terminal ramifications of monoaminergic and rubrospinal descending axons were significantly increased in spinal segments after 12 weeks of exercise compared to non-runners. 5-ethynyl-2′-deoxyuridine (EDU) labeling showed that proliferating cells, 90% of which were Olig2-positive oligodendrocyte progenitors, were 4.8-fold more abundant in runners than in non-runners. In 8-week runners, RNAseq analysis of spinal samples identified 404 genes up-regulated and 398 genes down-regulated, and 69 differently expressed genes involved in signal transduction, among which the NF-κB, PI3K-Akt and cyclic AMP (cAMP) signaling were three top pathways. Twelve-week training induced a significant elevation of postsynaptic density protein 95 (PSD95), synaptophysin 38 and myelin basic protein (MBP), but not of brain derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF) and insulin like growth factor-1 (IGF-1). Thus, locomotor training activates multiple signaling pathways, contributes to neural plasticity and functional improvement, and might palliate locomotor deficits in patients

    Fixed-time command filtered output feedback control for twin-roll inclined casting system with prescribed performance

    Get PDF
    The article investigates the issue of fixed-time control with adaptive output feedback for a twin-roll inclined casting system (TRICS) with disturbance. First, by using the mean value theorem, the nonaffine functions are decoupled to simplify the system. Second, radial basis function neural networks (RBFNNs) are introduced to approximate an unknown term, and a nonlinear neural state observer is created to handle the effects of unmeasured states. Then, the backstepping design framework is combined with prescribed performance and command filtering techniques to demonstrate that the scheme proposed in this article guarantees system performance within a fixed-time. The control design parameters determine the upper bound of settling time, regardless of the initial state of the system. Meanwhile, it ensures that all signals in the closed-loop system (CLS) remain bounded, and it can also maintain the tracking error within a predefined range within a fixed time. Finally, simulation results assert the effectiveness of the method
    • …
    corecore