134 research outputs found

    Anomalous Light Scattering by Pure Seawater

    Get PDF
    The latest model for light scattering by pure seawater was used to investigate the anomalous behavior of pure water. The results showed that water exhibits a minimum scattering at 24.6 °C, as compared to the previously reported values of minimum scattering at 22 °C or maximum scattering at 15 °C. The temperature corresponding to the minimum scattering also increases with the salinity, reaching 27.5 °C for S = 40 ps

    Improved Fine-Grained Representation Learning with Data Transformation

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Fine-grained recognition is challenging in computer vision and artificial intelligence. It aims to identify under subcategories of given images but suffers from small inter-class variance and large intra-class variance along with multiple object scales and complex background, leading to a more complex problem space. Recently, deep neural networks have extensively promoted the development of fine-grained recognition. However, the existing methods still suffer from several issues, including data limitation, model interpretation, and performance. In this thesis, we propose several data-transformation models to address these challenges. First, we develop a unified framework (MGN-CNN) based on a mixture of experts to promote diversity among experts by combing a gradually-enhanced learning strategy and a KullbackLeibler divergence based constraint. The strategy learns new experts on the dataset with prior knowledge from former experts and adds them to the model sequentially. At the same time, the introduced constraint forces the experts to produce diverse prediction distributions. These drive the experts to learn the task from different aspects, making them specialized in various subspace problems. Second, we propose Intra-class Part Swapping (InPS) that produces new data by performing attention-guided content swapping on input pairs from the same class. Compared with previous approaches, InPS avoids introducing noisy labels and ensures a likely holistic structure of objects in generated images. We demonstrate InPS outperforms the most recent augmentation approaches in both fine-grained recognition and weakly object localization. Finally, we explore fine-grained zero-shot learning and introduce a novel structure-aware feature generation scheme, termed SA-GAN, to explicitly account for the topological structure in learning both the latent space and the generative networks. This topology-preserving mechanism enables our method to significantly enhance the generalization capability on unseen-classes and consequently improve the classification performance

    Light Scattering by Pure Seawater: Effect of Pressure

    Get PDF
    The Zhang et al. model [Optics Express,17, 5698-5710 (2009)] for calculating light scattering by seawater doesnot account for pressure, which should, theoretically, affect molecular scattering. While negligible in nearsurface waters, the error associated with this approximation could be significant when backscattering is mea-sured directly in the deep ocean, by deep CTD casts or biogeochemical-Argo floats, for example. We updated theparameterization in the Zhang et al. model using (1) the Millard and Seaver equation for the refractive index ofseawater [Deep Sea Research Part A,37, 1909-1926 (1990)] and (2) the Feistel equation for Gibbs free energyfor seawater thermodynamics [Deep-Sea Research I,55, 1639-1671 (2008)]. As these equations include theeffect of pressure as well as salinity and temperature, our new parameterization allows us to investigate thepotential effect of pressure on scattering. Increasing pressure suppresses the random motion of molecules, re-ducing the fluctuations in both density and concentration, which in turn causes an overall decrease in lightscattering by seawater. For pure water and seawater with a salinity of 34 PSU, the decreases are approximately13% and 12%, respectively, with a 100-MPa (approximately the pressure of seawater at 10000 m) increase inpressure. Below the thermocline and/or halocline where temperature and salinity change slowly, the steadyincrease of pressure is the dominant factor affecting the light scattering by seawater. At depths where back-scattering is typically dominated by molecular scattering by seawater, particulate backscattering would beunderestimated if the effect of pressure on molecular scattering were not considered

    Calibration of the LISST-VSF to Derive the Volume Scattering Functions In Clear Waters

    Get PDF
    The recently commercialized LISST-VSF instrument measures the volume scattering function (VSF) from 0.1° to 15° with a traditional laser diffraction unit (LISST) and from 15° to 155° with an eyeball component. Between these two optical components, only the LISST unit is calibrated. The eyeball measurements are scaled using the VSFs at 15° that are measured by both components. As this relative calibration relies on a valid measurement at 15° by the LISST, it might fail in clear oceanic waters, where the forward scattering is relative weak either due to a lack of large particles or an overall low concentration of all particles. In this study, we calibrated the LISST-VSF eyeball component through a series of lab experiments using standard polystyrene beads. Validation with the beads of two different sizes showed a median difference of 11.1% between theoretical and calibrated values. Further evaluations with in situ data collected by the LISST-VSF and an ECO-BB3 meter indicated that the new calibration worked well in both turbid and clear waters, while the relative calibration method tended to overestimate VSFs in clear waters

    A closure study of ocean inherent optical properties using flow cytometry measurements

    Get PDF
    Flow cytometry and inherent optical property measurements of UK coastal waters were used to evaluate optical closure of different combinations of models for particle size, refractive index and shape. The particle size and refractive index distributions were derived from flow cytometry measurements and subsequently simplified through averaging down to the simplest model consisting of a Junge size distribution with a single bulk refractive index. Models for particle shapes included homogeneous spheres, coated spheres, and hexahedra. The simplest particle model, based on a Junge size distribution and a single bulk refractive index, gave the poorest quality of closure, suggesting that it underestimates particle complexity in the sampled waters. Other particle models using more detailed combinations of size and refractive index distributions gave broadly equivalent results for absorption and scattering. Backscattering was better represented by the most complex particle size and refractive index model, indicating that backscattering is sensitive to those factors. The homogeneous spherical model gave relatively good results, which is expected because the inversion of size and refractive index distributions from flow cytometry is based on the homogeneous spherical model using forward and side scattering signals. Lorenz-Mie theory, assuming homogeneous spheres, provided optical closure that was generally as accurate as models with more complex particle shape and structure. Cumulative contribution simulations revealed that particles between 0.5 and 20 µm substantially contributed to attenuation, scattering and backscattering, while particles larger than 20 µm mainly contributed to absorption and small particles (< 0.5 µm) contribute to 30–40% of backscattering

    Alignment of Optical Backscatter Measurements From the EXPORTS Northeast Pacific Field Deployment

    Get PDF
    Backscattering of light is commonly measured by ocean observing systems, including ships and autonomous platforms, and is used as a proxy for the concentration of water column constituents such as phytoplankton and particulate carbon. Multiple on-going projects involve large numbers of independent measurements of backscatter, as well as other biologically relevant parameters, to understand how biology is changing in time and space throughout the global ocean. Rarely are there sufficient measurements to test how well these instruments are inter-calibrated in real-world deployment conditions. This paper develops a procedure to align multiple independently calibrated backscatter instruments to each other using nearby profiling casts and applies this method to nine instruments deployed during a recent field campaign in the North Pacific during August–September of 2018. This process revealed several incorrect calibrations; post-alignment, all nine instruments aligned extremely well with each other. We also tested an alignment to a deep-water reference and found that this method is generally sufficient but has significant limitations; this procedure lacks the ability to correct instruments measuring only shallow profiles and can only account for additive offsets, not multiplicative changes. These findings highlight the utility of process studies involving several independent measurements of similar parameters in the same area

    Immunomodulatory roles of metalloproteinases in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is a chronic, autoimmune pathology characterized by persistent synovial inflammation and gradually advancing bone destruction. Matrix metalloproteinases (MMPs), as a family of zinc-containing enzymes, have been found to play an important role in degradation and remodeling of extracellular matrix (ECM). MMPs participate in processes of cell proliferation, migration, inflammation, and cell metabolism. A growing number of persons have paid attention to their function in inflammatory and immune diseases. In this review, the details of regulation of MMPs expression and its expression in RA are summarized. The role of MMPs in ECM remodeling, angiogenesis, oxidative and nitrosative stress, cell migration and invasion, cytokine and chemokine production, PANoptosis and bone destruction in RA disease are discussed. Additionally, the review summarizes clinical trials targeting MMPs in inflammatory disease and discusses the potential of MMP inhibition in the therapeutic context of RA. MMPs may serve as biomarkers for drug response, pathology stratification, and precision medicine to improve clinical management of rheumatoid arthritis

    A semi-nonparametric mixture model for selecting functionally consistent proteins

    Get PDF
    Background High-throughput technologies have led to a new era of proteomics. Although protein microarray experiments are becoming more common place there are a variety of experimental and statistical issues that have yet to be addressed, and that will carry over to new high-throughput technologies unless they are investigated. One of the largest of these challenges is the selection of functionally consistent proteins. Results We present a novel semi-nonparametric mixture model for classifying proteins as consistent or inconsistent while controlling the false discovery rate and the false non-discovery rate. The performance of the proposed approach is compared to current methods via simulation under a variety of experimental conditions. Conclusions We provide a statistical method for selecting functionally consistent proteins in the context of protein microarray experiments, but the proposed semi-nonparametric mixture model method can certainly be generalized to solve other mixture data problems. The main advantage of this approach is that it provides the posterior probability of consistency for each protein

    Dysregulation of PRMT5 in chronic lymphocytic leukemia promotes progression with high risk of Richter's transformation

    Get PDF
    : Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to&nbsp;RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases
    corecore