11,221 research outputs found

    Crystallization Behavior and Control of Amorphous Alloys

    Get PDF

    Carpet cloaking on a dielectric half-space

    Full text link
    Carpet cloaking is proposed to hide an object on a dielectric half-space from electromagnetic (EM) detection. A two-dimensional conformal transformation specified by an analytic function is utilized for the design. Only one nonsingular material parameter distribution suffices for the characterization. The cloaking cover situates on the dielectric half-space, and consists of a lossless upper part for EM wave redirection and an absorbing bottom layer for inducing correct reflection coefficient and absorbing transmission. Numerical simulations with Gaussian beam incidence are performed for verification.Comment: 6 pages, 3 figure

    Editorial: Hexagonal close-packed metals and alloys: Processing, microstructure and properties

    Get PDF
    In comparison with face-centered cubic (FCC) and body-centered cubic (BCC) metals and alloys, hexagonal close-packed (HCP) metals and alloys show distinct characteristics, such as atomic site occupation, anisotropic microstructure, and fewer slip systems, owing to their HCP lattice structure. Therefore, HCP metals and alloys have distinguished processing, microstructure, and properties. Several types of HCP metals and alloys, involving titanium, zirconium, magnesium, and so on, are extensively used in a variety of industrial and military sectors. Up to date, an increased requirement is still needed to improve the understanding of the relationships among processing, microstructures, and the resultant properties of HCP metals and alloys. In the meantime, surface modification may be conducted on the HCP metals and alloys to obtain better surface properties. However, many challenges are still open for the surface modification of HCP metals and alloys. In the contents of this topic, many endeavors are made to highlight the recent advances related to the processing methods (including surface modification), microstructures, and properties of HCP metals and alloys

    Editorial: Structure and mechanical properties of titanium alloys and Titanium Matrix Composites (TMCs)

    Get PDF

    Recent development in beta titanium alloys for biomedical applications

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. β-type titanium (Ti) alloys have attracted a lot of attention as novel biomedical materials in the past decades due to their low elastic moduli and good biocompatibility. This article provides a broad and extensive review of β-type Ti alloys in terms of alloy design, preparation methods, mechanical properties, corrosion behavior, and biocompatibility. After briefly introducing the development of Ti and Ti alloys for biomedical applications, this article reviews the design of β-type Ti alloys from the perspective of the molybdenum equivalency (Moeq) method and DV-Xα molecular orbital method. Based on these methods, a considerable number of β-type Ti alloys are developed. Although β-type Ti alloys have lower elastic moduli compared with other types of Ti alloys, they still possess higher elastic moduli than human bones. Therefore, porous β-type Ti alloys with declined elastic modulus have been developed by some preparation methods, such as powder metallurgy, additive manufacture and so on. As reviewed, β-type Ti alloys have comparable or even better mechanical properties, corrosion behavior, and biocompatibility compared with other types of Ti alloys. Hence, β-type Ti alloys are the more suitable materials used as implant materials. However, there are still some problems with β-type Ti alloys, such as biological inertness. As such, summarizing the findings from the current literature, suggestions forβ-type Ti alloys with bioactive coatings are proposed for the future development
    • …
    corecore