207,780 research outputs found
Noisy population recovery in polynomial time
In the noisy population recovery problem of Dvir et al., the goal is to learn
an unknown distribution on binary strings of length from noisy samples.
For some parameter , a noisy sample is generated by flipping
each coordinate of a sample from independently with probability
. We assume an upper bound on the size of the support of the
distribution, and the goal is to estimate the probability of any string to
within some given error . It is known that the algorithmic
complexity and sample complexity of this problem are polynomially related to
each other.
We show that for , the sample complexity (and hence the algorithmic
complexity) is bounded by a polynomial in , and
improving upon the previous best result of due to Lovett and Zhang.
Our proof combines ideas from Lovett and Zhang with a \emph{noise attenuated}
version of M\"{o}bius inversion. In turn, the latter crucially uses the
construction of \emph{robust local inverse} due to Moitra and Saks
Yibing Zhang, Piano
Piano Sonata Hob. XVI/50 / Joseph Haydn; Islamey op. 18 / Mily Balakirev; Piano Sonata No. 11 in A major, K. 331 / W. A. Mozart; Rigoletto de Verdi - Paraphrase de Concert, S434 / Franz Lisz
On Real Solutions of the Equation Φ\u3csup\u3e\u3cem\u3et\u3c/em\u3e\u3c/sup\u3e (\u3cem\u3eA\u3c/em\u3e) = 1/\u3cem\u3en\u3c/em\u3e J\u3csub\u3e\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e
For a class of n × n-matrices, we get related real solutions to the matrix equation Φt (A) = 1/n Jn by generalizing the approach of and applying the results of Zhang, Yang, and Cao [SIAM J. Matrix Anal. Appl., 21 (1999), pp. 642–645]. These solutions contain not only those obtained by Zhang, Yang, and Cao but also some which are neither diagonally nor permutation equivalent to those obtained by Zhang, Yang, and Cao. Therefore, the open problem proposed by Zhang, Yang, and Cao in the cited paper is solved
Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon
Contributions of hadronic effects to the muonium physics and anomalous
magnetic moment of muon are considered. Special attention is paid to
higher-order effects and the uncertainty related to the hadronic contribution
to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg
- …