102 research outputs found

    Tight Guarantees for Multi-unit Prophet Inequalities and Online Stochastic Knapsack

    Full text link
    Prophet inequalities are a useful tool for designing online allocation procedures and comparing their performance to the optimal offline allocation. In the basic setting of kk-unit prophet inequalities, the magical procedure of Alaei (2011) with its celebrated performance guarantee of 11k+31-\frac{1}{\sqrt{k+3}} has found widespread adoption in mechanism design and other online allocation problems in online advertising, healthcare scheduling, and revenue management. Despite being commonly used for implementing online allocation, the tightness of Alaei's procedure for a given kk has remained unknown. In this paper we resolve this question, characterizing the tight bound by identifying the structure of the optimal online implementation, and consequently improving the best-known guarantee for kk-unit prophet inequalities for all k>1k>1. We also consider a more general online stochastic knapsack problem where each individual allocation can consume an arbitrary fraction of the initial capacity. We introduce a new "best-fit" procedure for implementing a fractionally-feasible knapsack solution online, with a performance guarantee of 13+e20.319\frac{1}{3+e^{-2}}\approx0.319, which we also show is tight. This improves the previously best-known guarantee of 0.2 for online knapsack. Our analysis differs from existing ones by eschewing the need to split items into "large" or "small" based on capacity consumption, using instead an invariant for the overall utilization on different sample paths. Finally, we refine our technique for the unit-density special case of knapsack, and improve the guarantee from 0.321 to 0.3557 in the multi-resource appointment scheduling application of Stein et al. (2020). All in all, our results imply \textit{tight} Online Contention Resolution Schemes for kk-uniform matroids and the knapsack polytope, respectively, which has further implications in mechanism design

    Learning to Order for Inventory Systems with Lost Sales and Uncertain Supplies

    Full text link
    We consider a stochastic lost-sales inventory control system with a lead time LL over a planning horizon TT. Supply is uncertain, and is a function of the order quantity (due to random yield/capacity, etc). We aim to minimize the TT-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply. In this paper, we assume that both the demand and supply distributions are unknown and develop a computationally efficient online learning algorithm. We show that our algorithm achieves a regret (i.e. the performance gap between the cost of our algorithm and that of an optimal policy over TT periods) of O(L+T)O(L+\sqrt{T}) when Llog(T)L\geq\log(T). We do so by 1) showing our algorithm cost is higher by at most O(L+T)O(L+\sqrt{T}) for any L0L\geq 0 compared to an optimal constant-order policy under complete information (a well-known and widely-used algorithm) and 2) leveraging its known performance guarantee from the existing literature. To the best of our knowledge, a finite-sample O(T)O(\sqrt{T}) (and polynomial in LL) regret bound when benchmarked against an optimal policy is not known before in the online inventory control literature. A key challenge in this learning problem is that both demand and supply data can be censored; hence only truncated values are observable. We circumvent this challenge by showing that the data generated under an order quantity q2q^2 allows us to simulate the performance of not only q2q^2 but also q1q^1 for all q1<q2q^1<q^2, a key observation to obtain sufficient information even under data censoring. By establishing a high probability coupling argument, we are able to evaluate and compare the performance of different order policies at their steady state within a finite time horizon. Since the problem lacks convexity, we develop an active elimination method that adaptively rules out suboptimal solutions

    Modality-Aware Contrastive Instance Learning with Self-Distillation for Weakly-Supervised Audio-Visual Violence Detection

    Full text link
    Weakly-supervised audio-visual violence detection aims to distinguish snippets containing multimodal violence events with video-level labels. Many prior works perform audio-visual integration and interaction in an early or intermediate manner, yet overlooking the modality heterogeneousness over the weakly-supervised setting. In this paper, we analyze the modality asynchrony and undifferentiated instances phenomena of the multiple instance learning (MIL) procedure, and further investigate its negative impact on weakly-supervised audio-visual learning. To address these issues, we propose a modality-aware contrastive instance learning with self-distillation (MACIL-SD) strategy. Specifically, we leverage a lightweight two-stream network to generate audio and visual bags, in which unimodal background, violent, and normal instances are clustered into semi-bags in an unsupervised way. Then audio and visual violent semi-bag representations are assembled as positive pairs, and violent semi-bags are combined with background and normal instances in the opposite modality as contrastive negative pairs. Furthermore, a self-distillation module is applied to transfer unimodal visual knowledge to the audio-visual model, which alleviates noises and closes the semantic gap between unimodal and multimodal features. Experiments show that our framework outperforms previous methods with lower complexity on the large-scale XD-Violence dataset. Results also demonstrate that our proposed approach can be used as plug-in modules to enhance other networks. Codes are available at https://github.com/JustinYuu/MACIL_SD.Comment: ACM MM 202

    MM-Pyramid: Multimodal Pyramid Attentional Network for Audio-Visual Event Localization and Video Parsing

    Full text link
    Recognizing and localizing events in videos is a fundamental task for video understanding. Since events may occur in auditory and visual modalities, multimodal detailed perception is essential for complete scene comprehension. Most previous works attempted to analyze videos from a holistic perspective. However, they do not consider semantic information at multiple scales, which makes the model difficult to localize events in different lengths. In this paper, we present a Multimodal Pyramid Attentional Network (\textbf{MM-Pyramid}) for event localization. Specifically, we first propose the attentive feature pyramid module. This module captures temporal pyramid features via several stacking pyramid units, each of them is composed of a fixed-size attention block and dilated convolution block. We also design an adaptive semantic fusion module, which leverages a unit-level attention block and a selective fusion block to integrate pyramid features interactively. Extensive experiments on audio-visual event localization and weakly-supervised audio-visual video parsing tasks verify the effectiveness of our approach.Comment: ACM MM 202

    Rethinking the Evaluation Protocol of Domain Generalization

    Full text link
    Domain generalization aims to solve the challenge of Out-of-Distribution (OOD) generalization by leveraging common knowledge learned from multiple training domains to generalize to unseen test domains. To accurately evaluate the OOD generalization ability, it is necessary to ensure that test data information is unavailable. However, the current domain generalization protocol may still have potential test data information leakage. This paper examines the potential risks of test data information leakage in two aspects of the current protocol: pretraining on ImageNet and oracle model selection. We propose that training from scratch and using multiple test domains would result in a more precise evaluation of OOD generalization ability. We also rerun the algorithms with the modified protocol and introduce a new leaderboard to encourage future research in domain generalization with a fairer comparison

    Kaya: A Testing Framework for Blockchain-based Decentralized Applications

    Full text link
    In recent years, many decentralized applications based on blockchain (DApp) have been developed. However, due to inadequate testing, DApps are easily exposed to serious vulnerabilities. We find three main challenges for DApp testing, i.e., the inherent complexity of DApp, inconvenient pre-state setting, and not-so-readable logs. In this paper, we propose a testing framework named Kaya to bridge these gaps. Kaya has three main functions. Firstly, Kaya proposes DApp behavior description language (DBDL) to make writing test cases easier. Test cases written in DBDL can also be automatically executed by Kaya. Secondly, Kaya supports a flexible and convenient way for test engineers to set the blockchain pre-states easily. Thirdly, Kaya transforms incomprehensible addresses into readable variables for easy comprehension. With these functions, Kaya can help test engineers test DApps more easily. Besides, to fit the various application environments, we provide two ways for test engineers to use Kaya, i.e., UI and command-line. Our experimental case demonstrates the potential of Kaya in helping test engineers to test DApps more easily

    Life cycle assessment shows that retrofitting coal-fired power plants with fuel cells will substantially reduce greenhouse gas emissions

    Get PDF
    Addressing emissions released from coal-fired power plants (CFPPs) is vital to mitigate climate change. China aims to replace 240 TWh CFPPs with fuel cell (FC) technologies by 2050 to achieve carbon-neutrality goals. However, FCs are not emission-free throughout their technology life cycle, and FC effectiveness will vary depending on the CFPP configuration. Despite these uncertainties, a comprehensive evaluation of on-site CFPP-to-FC mitigation potential throughout the entire life cycle remains underexplored. Here, we use a prospective life cycle assessment to evaluate the inclusive mitigation potential of retrofitting 240 TWh CFPPs via four FCs that use wind power/natural gas as feedstocks. We find CO2, PM2.5, and SO2 emissions decrease by 72.0%–97.0%, 55.5%–92.6%, and 23.1%–86.1%, respectively, by 2050. Wind-electrolysis hydrogen FCs enable the largest life cycle CO2 reduction, but mining metals for wind turbines reduces PM2.5 and SO2 savings. Prioritizing FC deployment in northern China could double the mitigation potential. Our study provides insights for designing carbon-neutrality CFPP-to-FC roadmaps in China
    corecore