Learning to Order for Inventory Systems with Lost Sales and Uncertain Supplies

Abstract

We consider a stochastic lost-sales inventory control system with a lead time LL over a planning horizon TT. Supply is uncertain, and is a function of the order quantity (due to random yield/capacity, etc). We aim to minimize the TT-period cost, a problem that is known to be computationally intractable even under known distributions of demand and supply. In this paper, we assume that both the demand and supply distributions are unknown and develop a computationally efficient online learning algorithm. We show that our algorithm achieves a regret (i.e. the performance gap between the cost of our algorithm and that of an optimal policy over TT periods) of O(L+T)O(L+\sqrt{T}) when Lβ‰₯log⁑(T)L\geq\log(T). We do so by 1) showing our algorithm cost is higher by at most O(L+T)O(L+\sqrt{T}) for any Lβ‰₯0L\geq 0 compared to an optimal constant-order policy under complete information (a well-known and widely-used algorithm) and 2) leveraging its known performance guarantee from the existing literature. To the best of our knowledge, a finite-sample O(T)O(\sqrt{T}) (and polynomial in LL) regret bound when benchmarked against an optimal policy is not known before in the online inventory control literature. A key challenge in this learning problem is that both demand and supply data can be censored; hence only truncated values are observable. We circumvent this challenge by showing that the data generated under an order quantity q2q^2 allows us to simulate the performance of not only q2q^2 but also q1q^1 for all q1<q2q^1<q^2, a key observation to obtain sufficient information even under data censoring. By establishing a high probability coupling argument, we are able to evaluate and compare the performance of different order policies at their steady state within a finite time horizon. Since the problem lacks convexity, we develop an active elimination method that adaptively rules out suboptimal solutions

    Similar works

    Full text

    thumbnail-image

    Available Versions