45 research outputs found
Self-Assembled Thin-Layer Glycomaterials With a Proper Shell Thickness for Targeted and Activatable Cell Imaging
The construction of targeted and activatable materials can largely improve the precision of disease diagnosis and therapy. However, the currently developed systems either target a transmembrane antigen or are activatable to release imaging and/or therapeutic reagents intracellularly. Here, we develop a simple thin-layer glycomaterial through the self-assembly between fluorescent glycoprobes, in which the carbohydrate-targeting reagent and the fluorophore are linked to each other by polyethylene glycol with a suitable chain length, and thin-layer manganese dioxide. The fluorogenic material developed is both capable of targeting a transmembrane glycoprotein receptor and fluorescently activatable by intracellular biothiols. The shell thickness of the material was determined to be important for achieving the biothiol-induced activation of fluorescence. This research might provide insight into the development of precision-enhanced self-assembled materials for disease theranostics
UBE2C Is a Potential Biomarker of Intestinal-Type Gastric Cancer With Chromosomal Instability
This study explored potential biomarkers associated with Lauren classification of gastric cancer. We screened microarray datasets on gastric cancer with information of Lauren classification in gene expression omnibus (GEO) database, and compared differentially expressing genes between intestinal-type or diffuse-type gastric cancer. Four sets of microarray data (GSE2669, GSE2680, GDS3438, and GDS4007) were enrolled into analysis. By differential gene analysis, UBE2C, CDH1, CENPF, ERO1L, SCD, SOX9, CKS1B, SPP1, MMP11, and ANLN were identified as the top genes related to intestinal-type gastric cancer, and MGP, FXYD1, FAT4, SIPA1L2, MUC5AC, MMP15, RAB23, FBLN1, ANXA10, and ADH1B were genes related to diffuse-type gastric cancer. We comprehensively validated the biological functions of the intestinal-type gastric cancer related gene UBE2C and evaluated its clinical significance on 1,868 cases of gastric cancer tissues from multiple medical centers of Shanghai, China. The gain of copy number on 20q was found in 4 out of 5 intestinal-type cancer cell lines, and no similar copy number variation (CNV) was found in any diffuse-type cancer cell line. Interfering UBE2C expression inhibited cell proliferation, migration and invasion in vitro, and tumorigenesis in vivo. Knockdown of UBE2C resulted in G2/M blockage in intestinal-type gastric cancer cells. Overexpression of UBE2C activated ERK signal pathway and promoted cancer cell proliferation. U0126, an inhibitor of ERK signaling pathway reversed the oncogenic phenotypes caused by UBE2C. Moreover, overexpression of UBE2C was identified in human intestinal-type gastric cancer. Overexpression of UBE2C protein predicted poor clinical outcome. Taken together, we characterized a group of Lauren classification-associated biomarkers, and clarified biological functions of UBE2C, an intestinal-type gastric cancer associated gene. Overexpression of UBE2C resulted in chromosomal instability that disturbed cell cycle and led to poor prognosis of intestinal-type gastric cancer
Study on Growth Interface of Large Nd:YAG Crystals
A study was performed on the growth interface of a large-diameter 1 at% neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystal grown using the Czochralski method. Red parallel light and an orthogonal polarizing system were used to observe the distribution of the central and lateral cores of the crystal at different growth interfaces. The solid–liquid interface of large-diameter Nd:YAG crystal growth was mainly determined via the interaction between natural and forced convection. The shape of the solid–liquid interface was mainly controlled via maintaining the crystal rotation rate and the temperature field. Interface inversion generally occurred during the shoulder-expanding stage and late stages of the growth of the cylindrical portion of the crystal. The occurrence of interface inversion is directly related to the temperature field, process parameters, and diameter of the crystal. The growth shape of the crystal interface determined the size and distribution of the central and lateral cores of the crystal. The area of the central and lateral cores was reduced via adjusting the temperature gradient of the solid–liquid interface and crystal rotation speed
Influence of Surface Ultrasonic Rolling on Microstructure and Corrosion Property of T4003 Ferritic Stainless Steel Welded Joint
In this paper, the effect of surface ultrasonic rolling treatment (SURT) on surface properties of T4003 cold metal transfer (CMT) welded joints was studied. Surface topography and microstructure changes of the welded joint surface before and after SURT were observed by optical microscope and scanning electron microscope. The hardness and residual stress distribution of welded joint were measured by a microhardness tester and X-ray diffractometer. The change of corrosion resistance of welded joints was studied by electrochemical polarization curve measurement. The results show that surface roughness (Ra) of the weld zone, heat affect zone (HAZ), and base metal after SURT was reduced to 0.320 μm, 0.156 μm, and 0.227 μm, respectively, and surface morphology became smooth. The plastic deformation layer and working hardening layer were formed at the welded joint. The degree of plastic deformation of the weld zone was more serious than that in the base metal, and grains in weld zone was obviously refined. The thickness of plastic deformation layer was about 100 μm. The surface hardness in the weld zone was highest, which is about 420 HV. The refinement of grains and the increase of surface hardness can improve the fatigue life of welded joint. After SURT, the residual stress in the welded joint changes from residual tensile stress to residual compressive stress, which can also improve fatigue life of the welded joint. Surface corrosion resistance of welded joints after SURT was improved due to smooth surface and the formation of fine grains layer
STUDY ON THE EFFECT OF VELOCITY ON THE FATIGUE LIFE OF WHEELS RIM CONTAINING INCLUSIONS
The fatigue crack of the wheel rims often explodes in the inclusions gathering area, and the accumulation of large inclusions will affect their fatigue life. In this article, through dynamic simulation and finite element simulation combined with material fatigue test to determine the probability of containing inclusions wheel rim method of fatigue life at different speeds. In order to estimate the fatigue life of the train wheel rim with inclusions at different speeds, the vehicle dynamics model and the wheel axle with inclusions finite element model of EMUs CRH5 were established. Then obtain the random load time history of the wheel and the stress time history of the dangerous parts at different speeds. Based on the different confidence degrees、survival rates of the S-N curve and the Miner criterion to establish fatigue life of the wheel rim containing inclusions. The results show that under the same confidence degree and survival rate, as speed increases, the fatigue life of wheel rim containing inclusions will obviously shorter; under the same speed and confidence degree, as survival rate increases, the fatigue life of wheel rim containing inclusions will obviously shorter; under the same speed and survival rate, as confidence degree increases, the fatigue life of wheel rim containing inclusions will obviously shorter
Rolling Contact Fatigue-Related Microstructural Alterations in Bearing Steels: A Brief Review
Bearings are vital components that are widely used in modern machinery. Although usually manufactured with high-strength steels, bearings still suffer from rolling contact fatigue where unique microstructural alterations take place beneath the contact surface as a result of the complex stress state. Studying these microstructural alterations is a hot research topic with many efforts in recent decades. In this respect, the key information regarding four major types of microstructural alterations, white etching areas/white etching cracks, dark etching regions, white etching bands and light etching regions is reviewed regarding the phenomenology and formation mechanisms. Then, classical and state-of-the-art models are established to predict their formation and are summarised and evaluated. Based on the current research progress, several key questions and paradoxes for each type of microstructural alteration are raised, suggesting possible research directions in this field
Rolling Contact Fatigue-Related Microstructural Alterations in Bearing Steels: A Brief Review
Bearings are vital components that are widely used in modern machinery. Although usually manufactured with high-strength steels, bearings still suffer from rolling contact fatigue where unique microstructural alterations take place beneath the contact surface as a result of the complex stress state. Studying these microstructural alterations is a hot research topic with many efforts in recent decades. In this respect, the key information regarding four major types of microstructural alterations, white etching areas/white etching cracks, dark etching regions, white etching bands and light etching regions is reviewed regarding the phenomenology and formation mechanisms. Then, classical and state-of-the-art models are established to predict their formation and are summarised and evaluated. Based on the current research progress, several key questions and paradoxes for each type of microstructural alteration are raised, suggesting possible research directions in this field