16 research outputs found

    Terahertz spectra of electrolyte solutions under applied electric and magnetic fields

    Get PDF
    Most biomolecules require an aqueous environment to fully exert their biological activity. However, the rotation mode, vibration mode, and energy associated with the hydrogen bonding network of water are in the terahertz band, resulting in strong absorption. Therefore, it is difficult to detect liquid biological samples using the terahertz technology. Here, a high-transmittance double-layer microfluidic chip was prepared using a cycloolefin copolymer material with high transmittance of terahertz waves. Combined with terahertz time-domain spectroscopy, the terahertz spectral characteristics of deionized water, NaCl, NaCO3, and CH3COONa solutions were studied. The changes in the terahertz transmission intensity of these electrolyte solutions under constant electric and magnetic fields were measured. The results show that the terahertz spectra of different sodium salt solutions with the same concentration of 0.9 mol/L are different. Furthermore, the terahertz absorption coefficients of the different electrolyte solutions gradually decrease with the increase of their residence time under the electric field, which is contrary to the results obtained under the external magnetic field. This study provides a new idea for the detection of sodium salt solution and lays a foundation for the development of THz technology

    A Kinematic Calibration Method of a 3T1R 4-Degree-of-Freedom Symmetrical Parallel Manipulator

    No full text
    This paper proposes a method for kinematic calibration of a 3T1R, 4-degree-of-freedom symmetrical parallel manipulator driven by two pairs of linear actuators. The kinematic model of the individual branched chain is established by using the local product of exponentials formula. Based on this model, the model of the end effector's pose error is established from a pair of symmetrical branched chains, and a recursive least square method is applied for the parameter identification. By installing built-in sensors at the passive joints, a calibration method for a serial manipulator is eventually extended to this parallel manipulator. Specifically, the sensor installed at the second revolute joint of each branched chain is saved, replaced by numerical calculation according to kinematic constraints. The simulation results validate the effectiveness of the proposed kinematic error modeling and identification methods. The procedure for pre-processing compensation on this 3T1R parallel manipulator is eventually given to improve its absolute positioning accuracy, using the inverse of the calibrated kinematic model

    Terahertz spectra of electrolyte solutions under applied electric and magnetic fields

    No full text
    Most biomolecules require an aqueous environment to fully exert their biological activity. However, the rotation mode, vibration mode, and energy associated with the hydrogen bonding network of water are in the terahertz band, resulting in strong absorption. Therefore, it is difficult to detect liquid biological samples using the terahertz technology. Here, a high-transmittance double-layer microfluidic chip was prepared using a cycloolefin copolymer material with high transmittance of terahertz waves. Combined with terahertz time-domain spectroscopy, the terahertz spectral characteristics of deionized water, NaCl, NaCO3, and CH3COONa solutions were studied. The changes in the terahertz transmission intensity of these electrolyte solutions under constant electric and magnetic fields were measured. The results show that the terahertz spectra of different sodium salt solutions with the same concentration of 0.9 mol/L are different. Furthermore, the terahertz absorption coefficients of the different electrolyte solutions gradually decrease with the increase of their residence time under the electric field, which is contrary to the results obtained under the external magnetic field. This study provides a new idea for the detection of sodium salt solution and lays a foundation for the development of THz technology

    Inhomogeneity of Microstructure and Properties of 7085-T651 Aluminum Alloy Extra-thick Plate

    No full text
    Inhomogeneity of microstructure and properties of 7085-T651 aluminum alloy extra-thick plate were investigated by tensile properties, exfoliation corrosion, optical microscopy(OM), composition analysis, scanning electron microscopy(SEM),differential scanning calorimetry (DSC) and transmission electron microscopy (TEM). The results show that the microstructure, tensile property and exfoliation corrosion in different layers of 7085-T651 aluminum alloy of 110 mm thick are inhomogeneous. For the 1/4 thickness layer, the tensile strength is the minimum, 540 MPa, and the resistance to exfoliation corrosion of this layer is the worst, with exfoliation corrosion classification of EB. For the core layer, the tensile strength is the maximum, 580 MPa. The resistance to exfoliation corrosion of the surface layer is the best, with exfoliation corrosion classification of EA. For the 1/4 thickness layer, it has the largest recrystallized fraction up to about 47.7% and the grain size is about 105 μm; there are equilibrium phase particles precipitated on grain boundaries or within grains; the size of aging precipitates is small; and thus both mechanical properties and resistance to exfoliation corrosion are the worst. For the core layer, it has the smallest recrystallized fraction of about 14.8% and there are a large amount of sub-grains; the fraction of residual phase Al7Cu2Fe almost reaches up to about 1.43%; the size of the equilibrium phase on grain boundaries, the size of aging precipitates and the width of PFZ are large, and therefore good mechanical properties and bad resistance to exfoliation corrosion are obtained

    Comparisons Between Different Methods in Measuring Enzyme Similarity for Metabolic Network Alignment

    No full text
    Metabolic network alignments enable comparison of the similarities and differences between pathways in two metabolic networks and help to uncover the conserved sub-blocks therein. Such analysis is important in the understanding of metabolic networks and species evolution. The fundamental parts of metabolic network alignment algorithms all involve comparisons of the similarity between two enzymes as a similarity measure of network nodes. As a result, the study of methods for measuring enzyme similarity becomes highly relevant. Currently, two approaches are mainly used to measure enzyme similarity. One of the methods is based on similarity measures of gene or protein sequences; the other is based on enzyme classification. In this study, multiple metabolic network alignments were performed using both the methods. The results showed that, in general, the sequence similarity method yielded higher accuracy, especially with respect to reflecting evolutionary distances

    Estimation of Heavy Metal(Loid) Contents in Agricultural Soil of the Suzi River Basin Using Optimal Spectral Indices

    No full text
    For agricultural production and food safety, it is important to accurately and extensively estimate the heavy metal(loid) pollution contents in farmland soil. Remote sensing technology provides a feasible method for the rapid determination of heavy metal(loid) contents. In this study, the contents of Ni, Hg, Cr, Cu, and As in the agricultural soil of the Suzi River Basin in Liaoning Province were taken as an example. The spectral data, with Savitzky–Golay smoothing, were taken as the original spectra (OR), and the spectral transformation was achieved by continuum removal (CR), reciprocal (1/R), root means square (R), first-order differential (FDR), and second-order differential (SDR) methods. Then the spectral indices were calculated by the optimal band combination algorithm. The correlation between Ni, Hg, Cr, Cu, and As contents and spectral indices was analyzed, and the optimal spectral indices were selected. Then, multiple linear regression (MLR), partial least squares regression (PLSR), random forest regression (RFR), and adaptive neuro-fuzzy reasoning system (ANFIS) were used to establish the estimation model based on the combined optimal spectral indices method. The results show that the combined optimal spectral indices method improves the correlation between spectra and heavy metal(loid), the MLR model produces the best estimation effect for Ni and Cu (R2=0.713 and 0.855, RMSE = 5.053 and 8.113, RPD = 1.908 and 2.688, respectively), and the PLSR model produces the best effect for Hg, Cr, and As (R2= 0.653, 0.603, and 0.775, RMSE = 0.074, 23.777, and 1.923, RPD = 1.733, 1.621, and 2.154, respectively). Therefore, the combined optimal spectral indices method is feasible for heavy metal(loid) estimation in soils and could provide technical support for large-scale soil heavy metal(loid) content estimation and pollution assessment

    Smart Nanoreactors for pH-Responsive Tumor Homing, Mitochondria-Targeting, and Enhanced Photodynamic-Immunotherapy of Cancer

    No full text
    Photodynamic therapy (PDT) is an oxygen-dependent light-triggered noninvasive therapeutic method showing many promising aspects in cancer treatment. For effective PDT, nanoscale carriers are often needed to realize tumor-targeted delivery of photosensitizers, which ideally should further target specific cell organelles that are most vulnerable to reactive oxygen species (ROS). Second, as oxygen is critical for PDT-induced cancer destruction, overcoming hypoxia existing in the majority of solid tumors is important for optimizing PDT efficacy. Furthermore, as PDT is a localized treatment method, achieving systemic antitumor therapeutic outcomes with PDT would have tremendous clinical values. Aiming at addressing the above challenges, we design a unique type of enzyme-encapsulated, photosensitizer-loaded hollow silica nanoparticles with rationally designed surface engineering as smart nanoreactors. Such nanoparticles with pH responsive surface coating show enhanced retention responding to the acidic tumor microenvironment and are able to further target mitochondria, the cellular organelle most sensitive to ROS. Meanwhile, decomposition of tumor endogenous H<sub>2</sub>O<sub>2</sub> triggered by those nanoreactors would lead to greatly relieved tumor hypoxia, further favoring in vivo PDT. Moreover, by combining our nanoparticle-based PDT with check-point-blockade therapy, systemic antitumor immune responses could be achieved to kill nonirradiated tumors 1–2 cm away, promising for metastasis inhibition
    corecore