361,441 research outputs found

    Manni Zhang, soprano and Anna Carl, piano, April 21, 2018

    Full text link
    This is the concert program of the Manni Zhang, soprano and Anna Carl, piano performance on Saturday, April 21, 2018 at 8:00 p.m., at the Concert Hall, 855 Commonwealth Avenue. Works performed were La Promessa by Gioachino Rossini, Fiocca La Neve nu Pietro Cimara, Stornello by P. Cimara, Perchè dolce, caro bene by Stefano Donaudy, Ganymed Op. 19, No. 3 D. 544 by Franz Schubert, Liebhaber in allen Gestalten D. 558 by F. Schubert, Im Abendroth D. 799 by F. Schubert, Die Forelle Op. 32 D. 550 by F. Schubert, Vorrei spiegarvi, O Dio by Wolfgang Amadeus Mozart, Fêtes galantes by Claude Debussy, En Sourdine by C. Debussy, Fantoches by C. Debussy, Clair De Lune by C. Debussy, Love by Vittorio Giannini, Tell me, Oh blue blue Sky! by V. Giannini, Sing to My Heart a Song by V. Giannini, and Spring Nostalgia by Huang Zi. Digitization for Boston University Concert Programs was supported by the Boston University Humanities Library Endowed Fund

    Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation

    Full text link
    The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear term shows a first order pinning-depinning (PD) transition as the driving force FF is varied. We study the substrate-tilt dependence of the dynamic transition properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a facet with a characteristic slope scs_c as long as the substrate-tilt mm is less than scs_c. When m<scm<s_c, the transition is discontinuous and the critical value of the driving force Fc(m)F_c(m) is independent of mm, while the transition is continuous and Fc(m)F_c(m) increases with mm when m>scm>s_c. We explain these features from a pinning mechanism involving a localized pinning center and the self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed via uufile

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    On Real Solutions of the Equation Φ\u3csup\u3e\u3cem\u3et\u3c/em\u3e\u3c/sup\u3e (\u3cem\u3eA\u3c/em\u3e) = 1/\u3cem\u3en\u3c/em\u3e J\u3csub\u3e\u3cem\u3en\u3c/em\u3e\u3c/sub\u3e

    Get PDF
    For a class of n × n-matrices, we get related real solutions to the matrix equation Φt (A) = 1/n Jn by generalizing the approach of and applying the results of Zhang, Yang, and Cao [SIAM J. Matrix Anal. Appl., 21 (1999), pp. 642–645]. These solutions contain not only those obtained by Zhang, Yang, and Cao but also some which are neither diagonally nor permutation equivalent to those obtained by Zhang, Yang, and Cao. Therefore, the open problem proposed by Zhang, Yang, and Cao in the cited paper is solved
    corecore