29 research outputs found

    Propagation of a Topological Transition: the Rayleigh Instability

    Full text link
    The Rayleigh capillary instability of a cylindrical interface between two immiscible fluids is one of the most fundamental in fluid dynamics. As Plateau observed from energetic considerations and Rayleigh clarified through hydrodynamics, such an interface is linearly unstable to fission due to surface tension. In traditional descriptions of this instability it occurs everywhere along the cylinder at once, triggered by infinitesimal perturbations. Here we explore in detail a recently conjectured alternate scenario for this instability: front propagation. Using boundary integral techniques for Stokes flow, we provide numerical evidence that the viscous Rayleigh instability can indeed spread behind a front moving at constant velocity, in some cases leading to a periodic sequence of pinching events. These basic results are in quantitative agreement with the marginal stability criterion, yet there are important qualitative differences associated with the discontinuous nature of droplet fission. A number of experiments immediately suggest themselves in light of these results.Comment: 15 pages, 7 figures, Te

    The Energy Crisis in CPT II Variant Fibroblasts

    Get PDF
    Carnitine palmitoyltransferase II (CPT II) deficiency is one of the most common causes of fatty acid oxidation metabolism disorders. However, the molecular mechanism between CPT2 gene polymorphisms and metabolic stress has not been fully clarified. We previously reported that a number of patients show a thermal instable phenotype of compound hetero/homozygous variants of CPT II. To understand the mechanism of the metabolic disorder resulting from CPT II deficiency, the present study investigated CPT II variants in patient fibroblasts, [c.1102 G>A (p.V368I)] (heterozygous), [c.1102 G>A (p.V368I)] (homozygous), and [c.1055 T>G (p.F352C)] (heterozygous) + [c.1102 G>A (p.V368I)] (homozygous) compared with fibroblasts from healthy controls. CPT II variants exerted an effect of dominant negative on the homotetrameric proteins that showed thermal instability, reduced residual enzyme activities and a short half-life. Moreover, CPT II variant fibroblasts showed a significant decrease in fatty acid Ī²-oxidation and adenosine triphosphate generation, combined with a reduced mitochondrial membrane potential, resulting in cellular apoptosis. Collectively, our data indicate that the CPT II deficiency induces an energy crisis of the fatty acid metabolic pathway. These findings may contribute to the elucidation of the genetic factors involved in metabolic disorder encephalopathy caused by the CPT II deficiency

    Interface analysis and hot deformation behaviour of a novel laminated composite with high-Cr cast iron and low carbon steel prepared by hot compression bonding

    Get PDF
    A hot compression bonding process was developed to prepare a novel laminated composite consisting of high-Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the outer layers on a Gleeble 3500 thermomechanical simulator at a temperature of 950 Ā°C and a strain rate of 0.001 S-1. Interfacial bond quality and hot deformation behaviour of the laminate were studied by microstructural characterisation and mechanical tests. Experimental results show that the metallurgical bond between the constituent metals was achieved under the proposed bonding conditions without discernible defects and the formation of interlayer or intermetallic layer along the interface. The interfacial bond quality is excellent since no deterioration occurred around the interface which was deformed by Vickers indentation and compression test at room temperature with parallel loading to the interface. After well cladding by the LCS, the brittle HCCI can be severely deformed (about 57 % of reduction) at high temperature with crack-free. This significant improvement should be attributed to the decrease of crack sensitivity due to stress relief by soft claddings and enhanced flow property of the HCCI by simultaneous deformation with the LCS

    Constitutive analysis for hot deformation behaviour of novel bimetal consisting of pearlitic steel and low carbon steel

    Get PDF
    To understand the high temperature flow behaviour of a novel pearlitic steel (PS) and low carbon steel (LCS) bimetal, hot compression tests in a wide range of temperature and strain rate were conducted on a Gleeble 3500 thermo mechanical simulator, and the constitutive model was developed based on the experimental data. The measured true stress-strain curves exhibited three types of variation patterns, which are (i) a plateau type, (ii) single peak type and (iii) multi peaks type. These patterns well displayed the effects of the deformation temperature, strain rate and plastic strain on the flow behaviour of the bimetal. By incorporating the Zener-Hollomon parameter and material parameter functions of Ī±(Īµ), n(Īµ), Q(Īµ) and A(Īµ) into Arrhenius-type constitutive equation, the flow stress values predicted by the proposed model show a good agreement with experimental results by the evidence of reproducing true stress-strain curves accurately, high value of correlation coefficient (R=0.9873) and low value of average absolute relative error (AARE=4.81%). The proposed constitutive equation can be used to realise numerical simulation and determine processing parameters during hot-working of the PS/LCS bimetal

    Ab Initio Calculations on Elastic Properties of IF Steel Matrix Phase at High Temperature Based on Lattice Expansion Theory

    No full text
    Elucidating the evolution law of the elastic properties of the matrix phase is of great significance for the control of steel properties and quality during continuous casting and subsequent heat treatment. In this paper, thermal expansion experiments and ab initio calculations are used to study the elastic properties of the interstitial free (IF) steel matrix phase in different magnetic states and crystal structures. The results show that the bulk modulus B and the tetragonal shear elastic constant C’ for the entire temperature range decrease with increasing temperature, but C44 is the opposite. While from paramagnetic (PM) to ferromagnetic (FM) state, C’(C44) have changed ~188% (~27%), B increases by ~55% during the crystal structure change (fcc→bcc). With the FM to PM state, the Zener anisotropy parameter increases sharply, and Young’s modulus decreases significantly in the [001] direction; the maximum difference is ~76 GPa. The evolution rate of average Young’s modulus in single bcc-phase FM (fcc-phase PM) range reaches ~5.5(~5.6) × 10−2 GPa K−1. The research provides an effective method for ab initio calculation of the elastic properties of interstitial free and ultra-low carbon steels at high temperature, also furnishing a basis for the application of ab initio calculations to the high temperature performance of steel materials

    Abbreviated half-lives and impaired fuel utilization in carnitine palmitoyltransferase II variant fibroblasts.

    No full text
    Carnitine palmitoyltransferase II (CPT II) deficiency is one of the most common causes of fatty acid oxidation metabolism disorders. However, the molecular mechanism between CPT2 gene polymorphisms and metabolic stress has not been fully clarified. We previously reported that a number of patients show a thermal instable phenotype of compound hetero/homozygous variants of CPT II. To understand the mechanism of the metabolic disorder resulting from CPT II deficiency, the present study investigated CPT II variants in patient fibroblasts, [c.1102 G>A (p.V368I)] (heterozygous), [c.1102 G>A (p.V368I)] (homozygous), and [c.1055 T>G (p.F352C)] (heterozygous) + [c.1102 G>A (p.V368I)] (homozygous) compared with fibroblasts from healthy controls. CPT II variants exerted an effect of dominant negative on the homotetrameric proteins that showed thermal instability, reduced residual enzyme activities and a short half-life. Moreover, CPT II variant fibroblasts showed a significant decrease in fatty acid Ī²-oxidation and adenosine triphosphate generation, combined with a reduced mitochondrial membrane potential, resulting in cellular apoptosis. Collectively, our data indicate that the CPT II deficiency induces an energy crisis of the fatty acid metabolic pathway. These findings may contribute to the elucidation of the genetic factors involved in metabolic disorder encephalopathy caused by the CPT II deficiency
    corecore