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Interface analysis and hot deformation behaviour of a novel laminated
composite with high-Cr cast iron and low carbon steel prepared by hot
compression bonding

Abstract
A hot compression bonding process was developed to prepare a novel laminated composite consisting of high-
Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the outer layers on a Gleeble 3500
thermomechanical simulator at a temperature of 950 °C and a strain rate of 0.001 S-1. Interfacial bond quality
and hot deformation behaviour of the laminate were studied by microstructural characterisation and
mechanical tests. Experimental results show that the metallurgical bond between the constituent metals was
achieved under the proposed bonding conditions without discernible defects and the formation of interlayer
or intermetallic layer along the interface. The interfacial bond quality is excellent since no deterioration
occurred around the interface which was deformed by Vickers indentation and compression test at room
temperature with parallel loading to the interface. After well cladding by the LCS, the brittle HCCI can be
severely deformed (about 57 % of reduction) at high temperature with crack-free. This significant
improvement should be attributed to the decrease of crack sensitivity due to stress relief by soft claddings and
enhanced flow property of the HCCI by simultaneous deformation with the LCS.
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Abstraction: A hot compression bonding process was developed to prepare a novel laminated 

composite consisting of high-Cr cast iron (HCCI) as the inner layer and low carbon steel (LCS) as the 

outer layers on a Gleeble 3500 thermomechanical simulator at temperature of 950 
o
C and strain rate of 

0.001 s
-1

. Interfacial bond quality and hot deformation behaviour of the laminate were studied by 

microstructural characteristics and mechanical tests. Experimental results show that the metallurgical 

bond between the constituent metals was achieved under the proposed bonding conditions without 

discernible defects and the formation of interlayer or intermetallic layer along the interface. The 

interfacial bond quality is excellent since no deterioration occurred around the interface where was 

deformed by Vickers indentation and compression test at room temperature with parallel loading to the 

interface. After well cladding by the LCS, the brittle HCCI can be severely deformed (~57% of 

reduction) at high temperature with crack-free. This significant improvement should be attributed to the 

decrease of crack sensitivity due to stress relief by soft claddings and enhanced flow property of the 

HCCI by simultaneous deformation with the LCS. 

 

Keywords: Bonding; Laminated metal composite; Interface structure; Hot working; High-Cr cast iron 

 

1. Introduction 

 

Laminated metal composites (LMCs) have drawn considerable research attention over the past 

two decades due to their unique properties including advanced mechanical performance and virtuous 

complementarity between the constituent metals 
[1-16]

. Fabrication of materials in the form of laminated 

structure with immaculate interfacial bond can significantly improve many properties such as fracture 

toughness, impact resistance, fatigue behaviour and damping capacity; or provide enhanced ductility or 
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formability for otherwise brittle material 
[1, 2]

. Based on the advantages, increasing efforts have been 

focused on improving the workability of the brittle metal or alloy by means of lamination with the 

ductile material 
[5, 6]

. 

It is well known that high-Cr cast irons (HCCIs) possess high hardness and excellent wear 

resistance with inherent server brittleness because of the microstructural characteristics consisting of 

massive hard carbides in the ferrous matrix 
[17-19]

. High crack sensitivity derived from the brittleness 

results in an inferior deformability of the HCCIs. Hence the shaping of them is usually carried out by 

casting technology or spray forming in liquid state. Although some investigations have concentrated on 

the development of the laminated components with HCCI and low carbon steel (LCS) or medium 

carbon steel (MCS) prepared by cast or diffusion bonding 
[4, 15, 16, 20-22]

 to improve their impact 

resistance, the workability of the brittle HCCI with ductile metallic lamination has not been discussed 

till now. It is worth mentioning that the laminated components such as bimetal hammer, composite 

liner and cladding roller have been used in applications where require excellent wear resistance and 

sufficient toughness. 

Compared with the cast and diffusion bonding, hot compression bonding such as rolling and 

forging processes is more effective and efficient. It can not only produce the large scale LMCs at a 

lower cost with higher productivity, but also improve the mechanical properties of the constituent 

metals and synthetically performance of the composite by refining the microstructure or developing the 

preferred macro / micro texture during plastic deformation. In this study, a hot compression bonding 

process was explored to fabricate a novel sandwich structural LCS / HCCI / LCS laminate. Interfacial 

bond quality was analysed by microstructural observations and mechanical tests. The hot deformation 

behaviour of the HCCI with and without lamination was compared to elucidate its workability. 

 

2. Material and experimental procedure 

 

2.1. Material 

The chemical composition and Vickers hardness of the raw materials are listed in Table 1, in 

which the HCCI (in as-cast state) is characterised by high hardness and stiffness, whereas the LCS (in 

hot-rolled state) with low hardness implies excellent toughness and ductility. Masahashi et al. 
[5, 6]

 

reported that simultaneous deformation together with soft material is a beneficial method to deform 

hard material by stress relief, even though the plastic instabilities in one of the components happen 



earlier than the other one due to prominent differences in mechanical properties 
[23]

. Fig. 1(a) and (b) 

shows the initial microstructures of the LCS and the HCCI, respectively. It can be seen that from Fig. 

1(a), the LCS consists of high volume fraction of ferritic structure with fine grain size and a small 

quantity of pearlitic patches located at trilateral positions. This microstructure will transform to fully 

austenite at high temperature, and then imparts a favourable flow ability to the LCS. On the other hand, 

Fig. 1(b) presents the typical microstructure of the HCCI by the presence of large hexagonal primary 

M7C3 carbides and interdendritic eutectic M7C3 carbides in a matrix of martensite with retained 

austenite. These hard carbides contribute to outstanding wear resistance, but meanwhile severely 

deteriorate the workability of the HCCI. 

 

Table 1 Chemical composition (wt %) and Vickers hardness (HV) of HCCI and LCS. 

Material C Si Mn P S Cr Ni Mo Hardness 

HCCI 2.4 1.2 0.9 0.02 0.03 23.0 0.3 0.5 868 ± 50 

LCS 0.1 0.15 1.61 0.014 0.002 0.21 \ \ 176 ± 3 

 

  

Fig. 1. Initial microstructures of the constituent metals of the laminated composite: (a) LCS, (b) HCCI. 

 

2.2. Hot compression bonding test 

In order to simulate hot roll or forge bonding processes, a Gleeble 3500 thermomechanical 

simulator was employed to carry out the laminated bonding test. It is recognised that the Gleeble is a 

dynamic testing machine which can simulate a wide variety of thermal-mechanical metallurgical 

situations 
[24]

. According to the requirement of the simulator, the specimens of HCCI and LCS was cut 

into cylinders with dimensions of Φ10 × 6 mm and Φ10 × 3 mm, respectively. 

(a) (b) 



Prior to bonding test, all the contact surfaces were polished to 1 μm and cleaned by ethanol. Set of 

three specimens, one layer HCCI placed in the middle with two layers LCS placed on the both sides, 

were stacked into a sandwich structural assembly. The assembly was put in the testing chamber and a 

uniaxial compression (~2.5 MPa of applied stress) was employed at room temperature to ensure good 

contact between the specimens. Afterwards the temperature was raised to 950 
o
C at a heating rate of 5 

o
C/s. This temperature was determined by dilatometric test of the monolithic HCCI with the same 

thermal history. Fig. 2 shows the variation of the thermal expansion coefficient as a function of 

temperature, which indicates a solid-state phase transition occurred in 824-887 
o
C where the matrix 

was austenitised. Followed by 5 min for homogenisation, hot compression bonding was conducted with 

70% of overall reduction at an equivalent strain rate of 0.001 s
-1

. Once the bonding process was 

completed the laminated composite was cooled by air jet to room temperature before removal from the 

chamber. 

 

 

Fig. 2. Thermal dilatometric curve of the HCCI. 

 

2.3. Microstructural characterisation and mechanical test 

After fabrication, the laminated composite was cut and analysed through optical microscope (OM) 

and scanning electron microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) 

to study microstructures. The quality of the HCCI layer with severe plastic deformation was examined 

in two directions, viz. ND-TD plane which is perpendicular to the interface and RD-TD plane which is 

parallel to the interface. Microhardness profile across the interface was obtained by Vickers hardness 
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testing machine using a load of 100 g and dwell time of 10 s. Moreover, compression test at room 

temperature and Vickers indentation were performed to evaluate the bonding strength. The 

compression test was proceeded on a cuboid sample with loading parallel to the interface at an 

equivalent strain rate of 0.001 s
-1

. The sample with dimensions of 7.5 × 5 × 3.5 mm was machined from 

the laminated composite. Vickers indentation was conducted near the interface at the LCS side 
[25-27]

 by 

500 g loading for 10 s, and then was examined by SEM. 

 

3. Results and discussion 

 

3.1. Interfacial bond quality 

Various studies have demonstrated that interfacial bond can significantly affect the overall 

performance of composite materials 
[25-28]

. Hence it is of vital importance to assess the bonding quality 

of the current laminated composite. In hot compression bonding process, due to the combined action of 

pressure and heat over short periods, the reactions between the constituent metals involve three stages: 

(i) development of physical contact and initialisation of elements diffusion before hot compression, (ii) 

activation of the surfaces in contact by minor plastic deformation, which creates a mechanical bond 

with linear interface, (iii) interpenetration along the interface results in the formation of interfacial 

waves by increment of plastic deformation. Moreover, interlayer or intermetallic layer within the 

interface 
[29]

 probably generates in these stages once thermodynamic and kinetic conditions are 

satisfied. 

Fig. 3(a) and (b) shows the interfacial structure of the laminated composite using OM and SEM, 

respectively. The differences in contrast and microstructure between the LCS and the HCCI clearly 

reveal the interface with wavy shape. Previous research 
[30, 31]

 on explosive welding of LMCs have 

reported that the wavy joint is beneficial to improve the bonding strength. Eroglu and Kurt 
[16]

 also 

produced a HCCI / LCS laminate in solid-state by diffusion bonding at temperature range of 900-1100 

o
C. The results turned out that the interface is linear shape without plastic deformation. As shown in 

Fig. 3(a) and (b), although the interfacial morphology is non-linear, the interface has a good bonding 

quality between the constituent metals since no defect such as micro crack and lack of bonding was 

detected. Fig. 3(a) represents the microstructural changes after hot compression bonding. In the LCS 

side, the grain size was inhomogeneous and the grain shape became anomalous. While in the HCCI 



side, primary and eutectic carbides as well as ferrous matrix were refined with varying degrees. The 

secondary carbides precipitated in the HCCI layer were observed in Fig. 3(b). 

 

  

  

  

Fig. 3. OM and SEM micrographs of the bonding interface of the laminated composite: (a) OM 

micrograph, (b) SEM micrograph under the backscatter electron, (c) EDS mapping of (b), (d) C map 

and line analyses, (e) Cr map and line analyses, (f) Fe map and line analyses.  
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In addition, it is worth mentioning that no micrometre-scale interlay or intermetallic layer was 

found within the interface from Fig. 3(a) and (b). This observation was further testified by EDS 

analyses as shown in Fig. 3(c)-(f). The distinct division of X-ray maps and the step change of line 

scanning of Cr and Fe reveal that the elements diffusion between the constituent metals during the 

bonding process was very limited. On the one hand, the limited atomistic mixing of the interface 

occurred without apparent changes in the characteristics of the raw materials. Fig. 4 shows the 

microhardness variation across the interface of the laminated composite. It can be noted that the 

hardness values of the LCS side and the HCCI side slightly decreased and increased, respectively, than 

their initial hardness. The former could be attributed to the changes of grain morphology like size and 

shape, while the latter results from the refinement of microconstituents including carbides and matrix. 

On the other hand, the gradient of mechanical properties across the interface was accommodated 

somewhat due to the narrow diffusion. As shown in Fig. 4, the hardening on the LCS side and the 

softening on the HCCI side are recognised around the interface. Therefore, the metallurgical bonding 

rather than mechanical or chemical bonding was achieved under the hot compression conditions. 

 

 

Fig. 4. Microhardness variation across the interface of the laminated composite.  

 

Fig. 5(a) shows the true stress-strain curve of the cuboid laminated sample subjected to 

compression test at room temperature with loading parallel to the interface. It is noted that the flow 

stress increased with true strain up to a maximum value that was followed by a sharp decrease. This 
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sudden change was attributed to the contact lost between the sample and anvil because of fracture 

failure. Fig. 5(b) presents 3-D image of the cuboid sample after compression using M205A Stereo 

Microscope. The image was taken by piling up the tearing fragments, which displays the principal 

feature during quasi-static loading in parallel direction was parallel cracks propagating within the 

HCCI layer. Fig. 5(c) shows SEM micrograph of the characteristic fracture surface of the HCCI layer. 

It is seen that the cleavage planes of the carbide phase are the preferred path for crack propagation. The 

fracture behaviour of the laminated composite implies that the tensile stress perpendicular to the 

interface was very strong. However, neither crack nor delamination was detected along the interface, 

which indicates a reliable bond quality. 

 

   

 

Fig. 5. True stress-strain curve of the cuboid sample compressed at room temperature (a), 3-D image of 

the cuboid sample after compression (b), SEM micrograph showing typical fracture surface of the 

HCCI layer. 

 

Fig. 6 shows the Vickers indentation in the vicinity of the interface to further assess the bonding 

strength. Although this method is qualitative in its nature, it is useful for inspecting interfacial bond 
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quality in micro-scale. As is seen in low (Fig. 6(a)) and high (Fig. 6(b)) magnifications, no crack or 

debonding is observed around the joint interface deformed by indention. Therefore, it can be confirmed 

that the bonding strength obtained by the hot compression bonding process is excellent. 

 

  

Fig. 6. SEM micrographs of Vickers indentation near the interface at the LCS side: (a) morphology of 

indentation, (b) micrograph of the selected region. 

 

3.2. Hot deformation of the laminate 

Fig. 7 shows the macrostructure of the HCCI / LCS laminated composite. A sandwich structure is 

clearly observed with wavy interfaces. The small wave amplitude indicates that the plastic deformation 

on both LCS and HCCI layers are quasi-uniform. The partial reductions of the HCCI and the LCS are 

about 57% and 82%, respectively, which were calculated by averaging ten measurements using the 

image analysis technique. Furthermore, it was found that the LCS layers were extruded from the 

laminate. This is in line with the characteristics of the isostress behaviour of the laminate in which each 

constituent layer is subjected to the same stress 
[1]

. 

 

 

Fig. 7. Macrograph of the HCCI / LCS laminated composite. 
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To verify the quality of the HCCI layer after hot compression bonding, microstructural evolutions 

of this layer in ND-TD plane and RD-TD plane were examined by OM as shown in Fig. 8(a) and (b), 

respectively. As reported in previous section (Fig. 3 (a) and (b)), primary and eutectic carbides as well 

as ferrous matrix were refined with varying degrees due to plastic deformation, while secondary 

carbides precipitated because of austenite destabilisation 
[32]

 during thermomechanical treatment. In 

addition, one more significant finding is no discernible cracks can be found in this brittle layer, which 

means that the HCCI was successfully deformed with crack-free under the soft cladding conditions. 

 

  

Fig. 8. OM micrographs of the HCCI layer after hot compression bonding: (a) ND-TD plane, (b) 

RD-TD plane. 

 

As a comparison, the monolithic HCCI cylindrical sample with 6 mm length and 4 mm diameter 

was prepared and subjected to isothermal compression test at temperature of 950 
o
C and strain rate of 

0.001 s
-1

. The overall reduction was 60% of length even though the fracture may occur at a small 

plastic strain. Fig. 9 shows 3-D images of the sample after hot compression using M205A Stereo 

Microscope. Apparently, severe macro cracks (Fig. 9(b)) were observed with excessive barreling and 

unstrained base surface (Fig. 9(a)), which manifests the inferior deformability of the HCCI without soft 

claddings. The principal crack having an approximately 55
o
 angle to the base surface throughout the 

thickness indicates that the shear stress within the sample was strong even under a uniaxial 

compression load. As a consequence, one might draw the conclusion that the workability of the brittle 

HCCI was significantly improved by cladding with the ductile LCS. Xie et al. 
[22]

 investigated the hot 

rolling performance of a HCCI with lower Cr content (12.77 wt %) at higher temperature (1150 
o
C) 
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after cast cladding by LCS. The results briefly suggested that the “lubricating effect” derived from LCS 

claddings is beneficial to the deformation of HCCI. 

 

         

Fig. 9. 3-D images of the monolithic HCCI after hot compression: (a) Top view, (b) Side view. 

 

Fig. 10 shows the true stress-strain curves of the monolithic HCCI and the laminated composite 

subjected to hot compression process. Although the flow pattern of the laminated composite is different 

from that of the HCCI layer, it can help us to gain a fundamental understanding of variation of the flow 

stress during plastic deformation. As can be seen, the true stress of the monolithic HCCI increases 

dramatically within a small range of true strain (ε ≤ 0.1) and reaches to a peak value of ~270 MPa. 

Such a rapid change indicates that the HCCI is hypersensitivity of crack due to the effects of stress 

concentration. The following sharp decrease of the stress ascribes to the crack generation and 

propagation which destroyed the continuity of the material so as to a drastic decrease of the uniaxial 

compression load. However, the true stress-strain curve of the laminated composite shows a different 

flow pattern in three typical features: (i) the flow behaviour is mild without stress saltation, which is 

conducive to reduce the crack sensitivity, (ii) the peak value of the true stress is ~108 MPa at true strain 

of ~0.4. Considerable lower stress combined with higher plastic strain signifies the soft claddings 

contributed to stress relief during simultaneous deformation 
[5, 6]

. (iii) A steady state rather than a sharp 

decrease of the true stress is displayed over the peak value. 
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Fig. 10. True stress-strain curves of the monolithic HCCI and the laminated composite subjected to hot 

compression process. 

 

Fig. 11 shows the principle of hot compression process by illustrating the isostress behaviour of 

the monolithic HCCI and the well-bonded laminated composite. It is well known that the crack 

occurred because flow stress or plastic strain exceeds the critical value. For hot compression on the 

monolithic HCCI, the base surface of the sample not only sustained normal stress (σn), but also suffered 

from centripetal shear stress (στ) due to the friction between sample and anvil. Combined with its 

inferior flow ability, the sample was prone to barreling, and the lateral cracks (Fig. 9) occurred once 

shear stress in the barreling region over the critical value. 

However, the deformation mode was changed dramatically in the form of lamination. As shown in 

Fig. 11, the deformation behaviour of the laminated composite can be understood from the strain 

rate-stress response of the individual layers [1]. Since the LCS has an excellent solid flow ability at 

high temperature, it was preferentially deformed and even extruded from the laminate (Fig. 7). This 

preferred deformation tended to enforce the simultaneous deformation of the HCCI layer because of 

the strong interfacial bond. Hence a tensile stress (σt) acted on the base surface of the HCCI layer 

which contributed to its extension. This extension effectively reduced the barreling effect on the one 

hand, and decreased the normal stress (σ’n) on the other hand. As a result, the brittle HCCI might be 

flow like a ductile metal within the laminated composite. 
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Fig. 11. Schematic diagram of hot compression on the monolithic HCCI and the laminated composite. 

 

4. Conclusions 

 

A novel sandwich structural HCCI / LCS laminated composite was fabricated by hot compression 

bonding process using a Gleeble 3500 thermomechanical simulator. The interfacial bond quality 

between the constituent metals and hot workability of the brittle HCCI were investigated in this paper. 

The following conclusions are obtained: 

(1) Hot compression bonding process is a suitable method to produce the HCCI / LCS laminated 

composite under the proposed processing conditions. The metallurgical bond between the constituent 

metals was achieved at 950 
o
C without the formation of detectable interlay and intermetallic layer. 

(2) Interfacial bond quality of the laminated composite is excellent because no defects can be 

found around the interface. Compression test of the cuboid laminated sample with parallel loading to 

the interface at room temperature shows a reliable bond quality, and Vickers indentation close to the 

interface reveals high bonding strength. 

(3) The formability of the brittle HCCI was significantly improved by simultaneous deformation 

with the ductile LCS in the form of well-bonded laminated composite. The soft claddings contributed 

to stress relief during deformation so as to decrease the crack sensitivity. Moreover, the sound 
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interfacial bond changed the hot deformation behaviour of the HCCI and made it flow like a ductile 

material. 
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