83 research outputs found

    Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean

    Get PDF
    It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean

    Effect of Natural Nanostructured Rods and Platelets on Mechanical and Water Resistance Properties of Alginate-Based Nanocomposites

    Get PDF
    A series of biopolymer-based nanocomposite films were prepared by incorporating natural one-dimensional (1D) palygorskite (PAL) nanorods, and two-dimensional (2D) montmorillonite (MMT) nanoplatelets into sodium alginate (SA) film by a simple solution casting method. The effect of different dimensions of nanoclays on the mechanical, water resistance, and light transmission properties of the SA/PAL or MMT nanocomposite films were studied. The field-emission scanning electron microscopy (FE-SEM) result showed that PAL can disperse better than MMT in the SA matrix in the case of the same addition amount. The incorporation of both PAL and MMT into the SA film can enhance the tensile strength (TS) and water resistance capability of the film. At a high content of nanoclays, the SA/PAL nanocomposite film shows relatively higher TS, and better water resistance than the SA/MMT nanocomposite film. The SA/MMT nanocomposite films have better light transmission than SA/PAL nanocomposite film at the same loading amount of nanoclays. These results demonstrated that 1D PAL nanorods are more suitable candidate of inorganic filler to improve the mechanical and water resistance properties of biopolymers/nanoclays nanocomposites

    Compact free-running InGaAs/InP single-photon detector with 40% detection efficiency and 2.3 kcps dark count rate

    Full text link
    Free-running InGaAs/InP single-photon detectors (SPDs) based on negative-feedback avalanche diodes (NFADs) are the key components for applications requiring asynchronous single-photon detection in the near-infrared region. From the perspective of practical applications, the features of SPDs in terms of high photon detection efficiency (PDE), low noise, large sensitive area, and compactness are highly desired for system integration and performance enhancement. Here, we present the implementation of a compact four-channel multimode fiber coupling free-running InGaAs/InP SPD, with the best overall performance to date. On the one hand, we design and fabricate structure-optimized InGaAs/InP NFAD devices with 25 μ\mum diameter active area and integrated thin film resistors to enhance the maximum achievable PDE. On the other hand, we apply a compact thermoacoustic cryocooler to regulate the operating temperature of NFADs within a large range, and design a dedicated readout circuit with minimized parasitic parameters and tunable settings of hold-off time to suppress the afterpulsing effect. The SPD is then characterized to achieve remarkable overall performance simultaneously at 1550 nm, i.e., 40% PDE, 2.3 kcps dark count rate, 8% afterpulse probability and 49 ps timing jitter (full width at half maximum) under the conditions of 5.9 V excess bias voltage, 10 μ\mus hold-off time and 213 K operation temperature. Such performance and the results of the long-term stability tests indicate that the SPD could be a favorable solution for practical applications.Comment: 7 pages, 7 figures. Accepted for publication in the IEEE Journal of Selected Topics in Quantum Electronic

    Pressure-stabilized divalent ozonide CaO3 and its impact on Earth's oxygen cycles.

    Get PDF
    High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO3 crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO3. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO3 by geologically abundant mineral precursors at various depths in Earth's mantle

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    A model-based assurance case construction approach for system control software

    No full text
    Abstract As the massive damage caused by the failures of system control software becomes increasingly prominent, people pay more attention to the construction of assurance case to demonstrate the dependability level of system control software. In this paper, a new assurance case construction approach for system control software is proposed. Based on the metamodel of modular GSN, we give the basic procedure and tree structure deductive algorithm of the approach, and verify our work using Brake Control software used in an aircraft. The results show that the approach can develop assurance case effectively and efficiently

    A dependability case construction approach based on dependability deviation analysis

    No full text
    As computer-based systems play an important role in our daily life, dependability assessment of these systems is of great significance. Simply combining the result of each dependability attribute could not reflect system dependability faithfully. Therefore, holistic methods to assess dependability are necessary. As a new and promising method which focused on demonstrating the dependability of product-specific system, structured assurance case model receives growing attention. Build a dependability case systematically and effectively is challenging work, particularly for systems which involves multi-contractor who have different responsibilities. In this paper, we proposed a new dependability case construction method to address the ownership problem of system dependability case which involves multiple contractors. Our method extends the existing Dependability Deviation Analysis with contractors analysis and elicitation and integrates the contractors information into the whole dependability argument architecture. We illustrate our contributions by application to a Train Control and Monitor System which preliminarily shows the effectiveness of our method

    A New Approach to Assessment of Confidence in Assurance Cases

    No full text
    An assurance case is a body of evidence organized into an argument demonstrating that some claims about a system hold. It is generally developed to support claims in areas such as safety, reliability, maintainability, human factors, security etc. Practically, both argument and evidence are imperfect, resulting in that we can hardly say the claim is one hundred percent true. So when we do decision-making against assurance cases, we need to know how much confidence we hold in the claims. And the quantitative confidence would provide benefits over the qualitative one. In this paper, an approach is proposed to assess the confidence in assurance cases (mainly arguments) quantitatively. First we convert Argument Metamodel based (ARM-based) cases into a set of Toulmin model instances; then we use Hitchcock’s evaluative criteria for solo-verb-reasoning to analyze and quantify the Toulmin model instances into Bayesian Belief Network (BBN); running the Bayesian Belief Network, we get quantified confidence from each claim of the assurance case. Finally, we illustrate our approach by using a simplified fragment from safety cases and discuss several future work

    Reducing Water Sensitivity of Chitosan Biocomposite Films Using Gliadin Particles Made by In Situ Method

    No full text
    In order to sustain rapid expansion in the field of biocomposites, it is necessary to develop novel fillers that are biodegradable, and easy to disperse and obtain. In this work, gliadin particles (GPs) fabricated through an in situ method have been reported as fillers for creating chitosan (CS)-based biocomposite films. In general, the particles tend to agglomerate in the polymer matrix at high loading (approximately >10%) in the biopolymer/particles composites prepared by the traditional solution-blending method. However, the micrographs of biocomposites confirmed that the GPs are well dispersed in the CS matrix in all CS/GPs composites even at a high loading of 30% in this study. It was found that the GPs could improve the mechanical properties of the biocomposites. In addition, the results of moisture uptake and solubility in water of biocomposites showed that water resistance of biocomposites was enhanced by the introduction of GPs. These results suggested that GPs fabricated through an in situ method could be a good candidate for use in biopolymer-based composites

    Explaining Individual Subjective Well-Being of Urban China Based on the Four-Capital Model

    No full text
    A growing body of literature explains subjective well-being (SWB) from different perspectives. The statement of “built, human, social, and natural capital are necessary determinants of SWB” is named the four-capital model. Based on a cross-sectional dataset in 2013, which included 3293 individuals and covered the urban areas of most provinces in China, this paper employs the four-capital model to explain individual SWB of urban China. We select individual income and household income per capita as proxies of built capital; physical health and education as proxies of human capital; social connection and social trust as proxies of social capital; and air quality as a proxy of natural capital. In the four-capital model, household income per capita and physical health have almost the same and larger positive impacts on individual SWB of urban China; social connection, social trust, and air quality have smaller and diminishing positive impacts on individual SWB of urban China; and individual income and education are statistically insignificant. The empirical results offer guidance on how to achieve human-centered urbanization for China. This paper provides insights into how to further improve human well-being of urban residents in China and the applicability of the four-capital model in explaining SWB at the individual level
    corecore