10,060 research outputs found

    Multi-response optimization of hybrid fibre engineered cementitious composite using Grey-Taguchi method and utility concept

    Full text link
    This paper presents an experimental investigation conducted to assess the suitability of Taguchi-Grey relational analysis (GRA) and Taguchi method with utility concept (UC) for mix design optimization of a hybrid fibre engineered cementitious composite (ECC). Slag, fly ash and dolomite are utilized as binder materials and the quantity of various constituents of ECC is optimized to achieve improved compressive and tensile performance. In addition, two weighting techniques based on equal weight and maximum deviation are employed in the analysis and their effects on improving the efficiency of the optimization approach is also assessed. The design of experiments is first carried out using a standard Taguchi orthogonal array consisting of five factors viz. total cement replacement level, dolomite to binder ratio, slag to fly ash ratio, fibre proportions, and water binder ratio, at four levels. Thereafter, GRA and UC are applied to evaluate the composite indices and compute the optimal proportions targeting five response parameters namely compressive strength, peak compressive strain, elastic modulus, tensile strength, and ultimate tensile strain. Results indicate that both GRA and UC can be effectively integrated with Taguchi method for obtaining an optimal mix design of the ECC. Moreover, the use of weighting technique based on the maximum deviation method is found to be more appropriate as it can distinguish between relative effectiveness of different response parameters. The best performing mix had total cement replacement of 60%, 15% dolomite content by binder, slag to FA ratio of 1:0.2, 2.25% total fibre content, water-binder ratio of 0.20 and exhibited desired compressive and tensile properties for structural applications

    Mechanical properties of high-strength steel–polyvinyl alcohol hybrid fibre engineered cementitious composites

    Full text link
    With the advancement of material technology, the use of high-strength and high-performance materials in the construction industry is gaining popularity. Steel–polyvinyl alcohol (steel–PVA) hybrid fibre engineered cementitious composites (ECC) is one of such high-performance class of construction materials whose mechanical properties are not well studied in the literature especially in high-strength matrix. Therefore, in this paper, the mechanical properties of four different grades of high-strength steel–PVA ECC are experimentally investigated. ECC with nominal compressive strengths from 60 to 100 MPa are developed. Their mechanical properties including compressive and tensile stress–strain behaviour, elastic modulus and toughness are studied with particular focus on high-strength matrix. Test results show that the developed steel–PVA ECC could achieve good tensile (~0.8%) and compressive (~0.5%) ductility for general structural applications. Simple empirical relationships to predict the elastic modulus and tensile strength of the developed steel–PVA ECC as a function of their compressive strength are suggested. Moreover, an analytical model to generate a complete compressive stress–strain curve of the high-strength steel–PVA ECC is proposed and verified against the experimental results. The proposed stress–strain model would present a useful reference for non-linear analysis of structural elements utilising steel–PVA ECC

    A block-diagonal structured model reduction scheme for power grid networks

    Get PDF
    We propose a block-diagonal structured model order reduction (BDSM) scheme for fast power grid analysis. Compared with existing power grid model order reduction (MOR) methods, BDSM has several advantages. First, unlike many power grid reductions that are based on terminal reduction and thus error-prone, BDSM utilizes an exact column-by-column moment matching to provide higher numerical accuracy. Second, with similar accuracy and macromodel size, BDSM generates very sparse block-diagonal reduced-order models (ROMs) for massive-port systems at a lower cost, whereas traditional algorithms such as PRIMA produce full dense models inefficient for the subsequent simulation. Third, different from those MOR schemes based on extended Krylov subspace (EKS) technique, BDSM is input-signal independent, so the resulting ROM is reusable under different excitations. Finally, due to its blockdiagonal structure, the obtained ROM can be simulated very fast. The accuracy and efficiency of BDSM are verified by industrial power grid benchmarks. © 2011 EDAA.published_or_final_versionDesign, Automation and Test in Europe Conference and Exhibition (DATE 2011), Grenoble, France, 14-18 March 2011. In Design, Automation, and Test in Europe Conference and Exhibition Proceedings, 2011, p. 44-4

    Compressive behaviour of engineered cementitious composites and concrete encased steel composite columns

    Full text link
    This paper presents the results of an experimental study on the compressive behaviour of engineered cementitious composites and concrete encased steel (ECC-CES) composite columns. Two configurations of ECC-CES composite columns based on fully and partially concrete encasement were considered. A total of eleven short columns with different ECC and concrete encasing configurations were tested under pure compression. The effects of ECC strength, concrete strength and column configuration on the column compressive behaviour were investigated and reported in terms of failure modes, load-deformation curves, ductility and toughness. In addition, in order to study the confinement effect of different thickness ECC covers on high strength concrete (HSC), three ECC encased HSC short columns without encased steel section were also tested. The experimental results were compared with the ultimate strength predictions from different design codes for the tested columns. It was found that current design guidelines were generally conservative. Therefore, new equations with modified factors to predict the ultimate strength of ECC-CES columns were proposed. Finally, a comparison of performance of ECC-CES with conventional CES columns suggested that the ECC encasement could provide an alternative way to confine concrete core in columns applications

    Compressive performance of ECC-concrete encased high strength steel composite columns

    Full text link
    The use of high strength steel (HSS) in the construction of concrete encased steel (CES) composite columns is often limited by the strain incompatibility issue between HSS and concrete at peak-load. This study proposes an alternative approach to confine the high strength concrete with Engineered Cementitious Composite (ECC) to improve its compatibility with high strength steel. The main purpose of this study is to experimentally evaluate the axial compressive performance of the proposed composite column cross-section configuration. Behaviours of fifteen short columns including twelve ECC-CES columns are investigated in terms of failure modes, load-deformation curves, ductility and energy absorption capacity. The test parameters included ECC and concrete strengths, ECC cover thickness, steel section shape and column section's aspect ratio. It was found that ECC generally improved the failure behaviour of high strength steel CES columns and increased the deformation and energy absorption capacity. On average ECC-CES columns showed around 12% and 8% higher ductility and toughness than control concrete column, respectively. A detailed 3D nonlinear finite element model was developed and validated against experimental results. Applicability of current design codes to predict the ultimate strength of ECC-CES columns was also evaluated. Finally, a method to calculate the ECC-CES column's capacity considering effective material stresses at peak-load was proposed

    Engineered cementitious composites (ECC) encased concrete-steel composite stub columns under concentric compression

    Full text link
    This paper presents an experimental investigation on the behaviour of a new form of engineered cementitious composites (ECC) encased concrete-steel composite stub columns. The proposed column section uses ECC encasement as a potential confinement layer to control the premature concrete spalling and explosive brittle failure of concrete encased steel composite columns. In this study, twelve stub columns including two bare steel and ten composite sections are tested under concentric compression. The effects of some key parameters such as material strengths, steel section type and column section configuration on the performance of proposed column sections were investigated in terms of failure behaviour, load deformation response, toughness and ductility. It was found that ECC encasement improved the compressive failure behaviour of encased composite columns and enhanced their ductility and toughness. Strain analysis was performed to trace the strain development and damage patterns of different materials. Finally, a simple equation to estimate ultimate strength of proposed columns was proposed which gave good predictions agreed well with test results

    Behaviour of engineered cementitious composite-encased stub concrete columns under axial compression

    Full text link
    Although high-strength concrete (HSC) has higher compressive strength than normal-strength concrete (NSC), its application in column construction is often limited by its brittleness and limited post-peak ductility. In this preliminary study, hybrid fibre engineered cementitious composite (ECC) is proposed as a potential encasement material to confine the HSC core and to increase the column's ductility. The behaviours of the proposed ECC-encased concrete stub column under axial compression are studied experimentally. Thirty stub columns, including six NSC/HSC, six ECC and 18 ECC-encased NSC/HSC (ECC-NSC/HSC) are tested under axial compression. The effects of ECC strength, ECC encasement thickness, concrete strength and cross-section shapes (circular, square and rectangular) are then investigated and reported in terms of failure modes, strength ratios, post-peak ductility and energy dissipation capacity of the stub columns. It is found that, when comparing with NSC/HSC stub columns, although no significant improvement in the ultimate strength was observed, the ECC encasement improved the performance of ECC-NSC/HSC stub columns by reducing brittleness and improving the post-peak behaviour during failure

    Sequence Variations of Full-Length Hepatitis B Virus Genomes in Chinese Patients with HBsAg-Negative Hepatitis B Infection

    Get PDF
    BACKGROUND: The underlying mechanism of HBsAg-negative hepatitis B virus (HBV) infection is notoriously difficult to elucidate because of the extremely low DNA levels which define the condition. We used a highly efficient amplification method to overcome this obstacle and achieved our aim which was to identify specific mutations or sequence variations associated with this entity. METHODS: A total of 185 sera and 60 liver biopsies from HBsAg-negative, HBV DNA-positive subjects or known chronic hepatitis B (CHB) subjects with HBsAg seroclearance were amplified by rolling circle amplification followed by full-length HBV genome sequencing. Eleven HBsAg-positive CHB subjects were included as controls. The effects of pivotal mutations identified on regulatory regions on promoter activities were analyzed. RESULTS: 22 and 11 full-length HBV genomes were amplified from HBsAg-negative and control subjects respectively. HBV genotype C was the dominant strain. A higher mutation frequency was observed in HBsAg-negative subjects than controls, irrespective of genotype. The nucleotide diversity over the entire HBV genome was significantly higher in HBsAg-negative subjects compared with controls (p = 0.008) and compared with 49 reference sequences from CHB patients (p = 0.025). In addition, HBsAg-negative subjects had significantly higher amino acid substitutions in the four viral genes than controls (all p<0.001). Many mutations were uniquely found in HBsAg-negative subjects, including deletions in promoter regions (13.6%), abolishment of pre-S2/S start codon (18.2%), disruption of pre-S2/S mRNA splicing site (4.5%), nucleotide duplications (9.1%), and missense mutations in "alpha" determinant region, contributing to defects in HBsAg production. CONCLUSIONS: These data suggest an accumulation of multiple mutations constraining viral transcriptional activities contribute to HBsAg-negativity in HBV infection.published_or_final_versio

    PEDS: Passivity enforcement for descriptor systems via Hamiltonian- symplectic matrix pencil perturbation

    Get PDF
    Passivity is a crucial property of macromodels to guarantee stable global (interconnected) simulation. However, weakly nonpassive models may be generated for passive circuits and systems in various contexts, such as data fitting, model order reduction (MOR) and electromagnetic (EM) macromodeling. Therefore, a post-processing passivity enforcement algorithm is desired. Most existing algorithms are designed to handle poleresidue models. The few algorithms for state space models only handle regular systems (RSs) with a nonsingular D+D T term. To the authors' best knowledge, no algorithm has been proposed to enforce passivity for more general descriptor systems (DSs) and state space models with singular D + D T terms. In this paper, a new post-processing passivity enforcement algorithm based on perturbation of Hamiltonian-symplectic matrix pencil, PEDS, is proposed. PEDS, for the first time, can enforce passivity for DSs. It can also handle all kinds of state space models (both RSs and DSs) with singular D + D T terms. Moreover, a criterion to control the error of perturbation is devised, with which the optimal passive models with the best accuracy can be obtained. Numerical examples then verify that PEDS is efficient, robust and relatively cheap for passivity enforcement of DSs with mild passivity violations. ©2010 IEEE.published_or_final_versionThe IEEE/ACM International Conference on Computer-Aided Design (ICCAD 2010), San Jose, CA., 7-11 November 2010. In Proceedings of ICCAD, 2010, p. 800-80

    On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO

    Get PDF
    In this paper, we consider the compressed sensing problem of reconstructing a sparse signal from an undersampled set of noisy linear measurements. The regularized least squares or least absolute shrinkage and selection operator (LASSO) formulation is used for signal estimation. The measurement matrix is assumed to be constructed by concatenating several randomly orthogonal bases, which we refer to as structurally orthogonal matrices. Such measurement matrix is highly relevant to large-scale compressive sensing applications because it facilitates rapid computation and parallel processing. Using the replica method in statistical physics, we derive the mean-squared-error (MSE) formula of reconstruction over the structurally orthogonal matrix in the large-system regime. Extensive numerical experiments are provided to verify the analytical result. We then consider the analytical result to investigate the MSE behaviors of the LASSO over the structurally orthogonal matrix, with an emphasis on performance comparisons with matrices with independent and identically distributed (i.i.d.) Gaussian entries. We find that structurally orthogonal matrices are at least as good as their i.i.d. Gaussian counterparts. Thus, the use of structurally orthogonal matrices is attractive in practical applications
    • …
    corecore