150 research outputs found

    ENVIRONMENTAL SURROUNDINGS AND PERSONAL WELL-BEING IN URBAN CHINA

    Get PDF
    We examine the relationship between atmospheric pollution, water pollution, traffic congestion, access to parkland and personal well-being using a survey administered across six Chinese cities in 2007. In contrast to existing studies of the determinants of well-being by economists, which have typically employed single item indicators to measure well-being, we use the Personal Well-Being Index (PWI). We also employ the Job Satisfaction Survey (JSS) to measure job satisfaction, which is one of the variables for which we control when examining the relationship between environmental surroundings and personal well-being. Previous research by psychologists has shown the PWI and JSS to have good psychometric properties in western and Chinese samples. A robust finding is that in cities with higher levels of atmospheric pollution and traffic congestion, respondents report lower levels of personal well-being ceteris paribus. Specifically, we find that a one standard deviation increase in suspended particles or sulphur dioxide emissions is roughly equivalent to a 12-13 per cent reduction in average monthly income in the six cities.China, Environment, Pollution, Personal Well-Being.

    Objective sleep characteristics and hypertension: a community-based cohort study

    Get PDF
    ObjectiveThe link between sleep quality and hypertension risk is well-established. However, research on the specific dose-relationship between objective sleep characteristics and hypertension incidence remains limited. This study aims to explore the dose-relationship association between objective sleep characteristics and hypertension incidence.MethodsA community-based prospective cohort study design was employed using data from the Sleep Heart Health Study (SHHS). A total of 2,460 individuals were included in the study, of which 780 had hypertension. Baseline personal characteristics and medical history were collected. Objective sleep characteristics were obtained through polysomnography (PSG). Multivariate logistic regression models were utilized for analysis. Restricted cubic splines (RCS) were used to examine dose-relationship associations.ResultsAfter adjusting for covariates, the percentage of total sleep duration in stage 2 (N2%) was positively associated with hypertension incidence, while the N3% was negatively associated with hypertension incidence Odds ratio (OR) = 1.009, 95% confidence interval (CI) [1.001, 1.018], P = 0.037; OR = 0.987, 95% CI: [0.979, 0.995], P = 0.028, respectively. For every 10% increase in N2 sleep, the risk of developing hypertension increases by 9%, while a 3% decrease in N3 sleep corresponds to a 0.1% increase in the incidence of hypertension. In the subgroup of non-depression, a positive association between N2% and hypertension was significant statistically (OR = 1.012, 95%CI, 1.002, 1.021, P = 0.013, Pinteraction = 0.013). RCS demonstrated that the risk of developing hypertension was lower when N2% ranged from 38% to 58% and rapidly increased thereafter (P = 0.002, non-linear P = 0.040). The lowest risk for hypertension incidence risk of N3% occurring at 25%, and a significant increase below 15% or above 40% (P = 0.001, non-linear P = 0.008).ConclusionsThere's a negative association between N3% and the incidence of hypertension, and a positive association between N2% and the incidence of hypertension, particularly among non-depression individuals. These associations exhibit strong non-linear dose-response relationships

    Aqua­azido­{2,2′-[o-phenylenebis(nitrilo­methyl­idyne)]diphenolato}manganese(III) hemihydrate

    Get PDF
    In the title compound, [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O, the MnIII ion is chelated by the N,N′,O,O′-tetra­dentate Schiff base ligand and further coordinated by one azide ion and one water mol­ecule in trans positions, resulting in a distorted fac-MnN3O3 octa­hedral arrangement. The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing

    Fabrication and Properties of Carbon- Encapsulated Cobalt Nanoparticles over NaCl by CVD

    Get PDF
    Carbon-encapsulated cobalt (Co@C) nanoparticles, with a tunable structure, were synthesized by chemical vapor deposition using Co nanoparticles as the catalyst and supported on a water-soluble substrate (sodium chloride), which was easily removed by washing and centrifugation. The influences of growth temperature and time on the structure and magnetic properties of the Co@C nanoparticles were systematically investigated. For different growth temperatures, the magnetic Co nanoparticles were encapsulated by different types of carbon layers, including amorphous carbon layers, graphitic layers, and carbon nanofibers. This inferred a close relationship between the structure of the carbon-encapsulated metal nanoparticles and the growth temperature. At a fixed growth temperature of 400 °C, prolonged growth time caused an increase in thickness of the carbon layers. The magnetic characterization indicated that the magnetic properties of the obtained Co@C nanoparticles depend not only on the graphitization but also on the thickness of the encapsulated carbon layer, which were easily controlled by the growth temperatures and times. Optimization of the synthesis process allowed achieving relatively high coercivity of the synthesized Co@C nanoparticles and enhancement of its ferromagnetic properties, which make this system promising as a magnetic material, particularly for high-density magnetic recording applications

    Age-Related Alterations in Electroencephalography Connectivity and Network Topology During n-Back Working Memory Task

    Get PDF
    The study of the healthy brain in elders, especially age-associated alterations in cognition, is important to understand the deficits created by Alzheimer's disease (AD), which imposes a tremendous burden on individuals, families, and society. Although, the changes in synaptic connectivity and reorganization of brain networks that accompany aging are gradually becoming understood, little is known about how normal aging affects brain inter-regional synchronization and functional networks when items are held in working memory (WM). According to the classic Sternberg WM paradigm, we recorded multichannel electroencephalography (EEG) from healthy adults (young and senior) in three different conditions, i.e., the resting state, 0-back (control) task, and 2-back task. The phase lag index (PLI) between EEG channels was computed and then weighted and undirected network was constructed based on the PLI matrix. The effects of aging on network topology were examined using a brain connectivity toolbox. The results showed that age-related alteration was more prominent when the 2-back task was engaged, especially in the theta band. For the younger adults, the WM task evoked a significant increase in the clustering coefficient of the beta-band functional connectivity network, which was absent in the older adults. Furthermore, significant correlations were observed between the behavioral performance of WM and EEG metrics in the theta and gamma bands, suggesting the potential use of those measures as biomarkers for the evaluation of cognitive training, for instance. Taken together, our findings shed further light on the underlying mechanism of WM in physiological aging and suggest that different EEG frequencies appear to have distinct functional correlates in cognitive aging. Analysis of inter-regional synchronization and topological characteristics based on graph theory is thus an appropriate way to explore natural age-related changes in the human brain

    Concept Design of the “Guanlan” Science Mission: China’s Novel Contribution to Space Oceanography

    Get PDF
    Among the various challenges that spaceborne radar observations of the ocean face, the following two issues are probably of a higher priority: inadequate dynamic resolution, and ineffective vertical penetration. It is therefore the vision of the National Laboratory for Marine Science and Technology of China that two highly anticipated breakthroughs in the coming decade are likely to be associated with radar interferometry and ocean lidar (OL) technology, which are expected to make a substantial contribution to a submesoscale-resolving and depth-resolving observation of the ocean. As an expanded follow-up of SWOT and an oceanic counterpart of CALIPSO, the planned “Guanlan” science mission comprises a dual-frequency (Ku and Ka) interferometric altimetry (IA), and a near-nadir pointing OL. Such an unprecedented combination of sensor systems has at least three prominent advantages. (i) The dual-frequency IA ensures a wider swath and a shorter repeat cycle which leads to a significantly improved temporal and spatial resolution up to days and kilometers. (ii) The first spaceborne active OL ensures a deeper penetration depth and an all-time detection which leads to a layered characterization of the optical properties of the subsurface ocean, while also serving as a near-nadir altimeter measuring vertical velocities associated with the divergence, and convergence of geostrophic eddy motions in the mixed layer. (iii) The simultaneous functioning of the IA/OL system allows for an enhanced correction of the contamination effects of the atmosphere and the air-sea interface, which in turn considerably reduces the error budgets of the two sensors. As a result, the integrated IA/OL payload is expected to resolve the ocean variability at submeso and sub-week scales with a centimeter-level accuracy, while also partially revealing marine life systems and ecosystems with a 10-m vertical interval in the euphotic layer, moving a significant step forward toward a “transparent ocean” down to the vicinity of the thermocline, both dynamically and bio-optically

    Ultra-small topological spin textures with size of 1.3nm at above room temperature in Fe78Si9B13 amorphous alloy

    Full text link
    Topologically protected spin textures, such as skyrmions1,2 and vortices3,4, are robust against perturbations, serving as the building blocks for a range of topological devices5-9. In order to implement these topological devices, it is necessary to find ultra-small topological spin textures at room temperature, because small size implies the higher topological charge density, stronger signal of topological transport10,11 and the higher memory density or integration for topological quantum devices5-9. However, finding ultra-small topological spin textures at high temperatures is still a great challenge up to now. Here we find ultra-small topological spin textures in Fe78Si9B13 amorphous alloy. We measured a large topological Hall effect (THE) up to above room temperature, indicating the existence of highly densed and ultra-small topological spin textures in the samples. Further measurements by small-angle neutron scattering (SANS) reveal that the average size of ultra-small magnetic texture is around 1.3nm. Our Monte Carlo simulations show that such ultra-small spin texture is topologically equivalent to skyrmions, which originate from competing frustration and Dzyaloshinskii-Moriya interaction12,13 coming from amorphous structure14-17. Taking a single topological spin texture as one bit and ignoring the distance between them, we evaluated the ideal memory density of Fe78Si9B13, which reaches up to 4.44*104 gigabits (43.4 TB) per in2 and is 2 times of the value of GdRu2Si218 at 5K. More important, such high memory density can be obtained at above room temperature, which is 4 orders of magnitude larger than the value of other materials at the same temperature. These findings provide a unique candidate for magnetic memory devices with ultra-high density.Comment: 26 pages, 4 figure

    Modulation of Bax and mTOR for Cancer Therapeutics.

    Get PDF
    A rationale exists for pharmacologic manipulation of the serine (S)184 phosphorylation site of the proapoptotic Bcl2 family member Bax as an anticancer strategy. Here, we report the refinement of the Bax agonist SMBA1 to generate CYD-2-11, which has characteristics of a suitable clinical lead compound. CYD-2-11 targeted the structural pocket proximal to S184 in the C-terminal region of Bax, directly activating its proapoptotic activity by inducing a conformational change enabling formation of Bax homooligomers in mitochondrial membranes. In murine models of small-cell and non-small cell lung cancers, including patient-derived xenograft and the genetically engineered mutant KRAS-driven lung cancer models, CYD-2-11 suppressed malignant growth without evident significant toxicity to normal tissues. In lung cancer patients treated with mTOR inhibitor RAD001, we observed enhanced S184 Bax phosphorylation in lung cancer cells and tissues that inactivates the propaoptotic function of Bax, contributing to rapalog resistance. Combined treatment of CYD-2-11 and RAD001 in murine lung cancer models displayed strong synergistic activity and overcame rapalog resistanc

    The Role of Eye Gaze in Security and Privacy Applications: Survey and Future HCI Research Directions

    Get PDF
    For the past 20 years, researchers have investigated the use of eye tracking in security applications. We present a holistic view on gaze-based security applications. In particular, we canvassed the literature and classify the utility of gaze in security applications into a) authentication, b) privacy protection, and c) gaze monitoring during security critical tasks. This allows us to chart several research directions, most importantly 1) conducting field studies of implicit and explicit gaze-based authentication due to recent advances in eye tracking, 2) research on gaze-based privacy protection and gaze monitoring in security critical tasks which are under-investigated yet very promising areas, and 3) understanding the privacy implications of pervasive eye tracking. We discuss the most promising opportunities and most pressing challenges of eye tracking for security that will shape research in gaze-based security applications for the next decade
    corecore