70 research outputs found

    Assisting Language Learners: Automated Trans-Lingual Definition Generation via Contrastive Prompt Learning

    Full text link
    The standard definition generation task requires to automatically produce mono-lingual definitions (e.g., English definitions for English words), but ignores that the generated definitions may also consist of unfamiliar words for language learners. In this work, we propose a novel task of Trans-Lingual Definition Generation (TLDG), which aims to generate definitions in another language, i.e., the native speaker's language. Initially, we explore the unsupervised manner of this task and build up a simple implementation of fine-tuning the multi-lingual machine translation model. Then, we develop two novel methods, Prompt Combination and Contrastive Prompt Learning, for further enhancing the quality of the generation. Our methods are evaluated against the baseline Pipeline method in both rich- and low-resource settings, and we empirically establish its superiority in generating higher-quality trans-lingual definitions.Comment: Accepted by ACL-BEA worksho

    Explicit gain equations for hybrid graphene-quantum-dot photodetectors

    Full text link
    Graphene is an attractive material for broadband photodetection but suffers from weak light absorption. Coating graphene with quantum dots can significantly enhance light absorption and create extraordinarily high photo gain. This high gain is often explained by the classical gain theory which is unfortunately an implicit function and may even be questionable. In this work, we managed to derive explicit gain equations for hybrid graphene-quantum-dot photodetectors. Due to the work function mismatch, lead sulfide (PbS) quantum dots coated on graphene will form a surface depletion region near the interface of quantum dots and graphene. Light illumination narrows down the surface depletion region, creating a photovoltage that gates the graphene. As a result, high photo gain in graphene is observed. The explicit gain equations are derived from the theoretical gate transfer characteristics of graphene and the correlation of the photovoltage with the light illumination intensity. The derived explicit gain equations fit well with the experimental data, from which physical parameters are extracted.Comment: 14 pages, 6 figure

    Multi-Level Variational Spectroscopy using a Programmable Quantum Simulator

    Full text link
    Energy spectroscopy is a powerful tool with diverse applications across various disciplines. The advent of programmable digital quantum simulators opens new possibilities for conducting spectroscopy on various models using a single device. Variational quantum-classical algorithms have emerged as a promising approach for achieving such tasks on near-term quantum simulators, despite facing significant quantum and classical resource overheads. Here, we experimentally demonstrate multi-level variational spectroscopy for fundamental many-body Hamiltonians using a superconducting programmable digital quantum simulator. By exploiting symmetries, we effectively reduce circuit depth and optimization parameters allowing us to go beyond the ground state. Combined with the subspace search method, we achieve full spectroscopy for a 4-qubit Heisenberg spin chain, yielding an average deviation of 0.13 between experimental and theoretical energies, assuming unity coupling strength. Our method, when extended to 8-qubit Heisenberg and transverse-field Ising Hamiltonians, successfully determines the three lowest energy levels. In achieving the above, we introduce a circuit-agnostic waveform compilation method that enhances the robustness of our simulator against signal crosstalk. Our study highlights symmetry-assisted resource efficiency in variational quantum algorithms and lays the foundation for practical spectroscopy on near-term quantum simulators, with potential applications in quantum chemistry and condensed matter physics

    Advances in ultrashallow doping of silicon

    No full text
    Ultrashallow doping is required for both classical field-effect transistors in integrated circuits and revolutionary quantum devices in quantum computing. In this review, we give a brief overview on recent research advances in three technologies to form ultrashallow doping, namely molecular monolayer doping, molecular beam epitaxy, and low energy ion implantation. A research perspective will be provided at the end of this review

    Decoding Cancer Evolution: Integrating Genetic and Non-Genetic Insights

    No full text
    The development of cancer begins with cells transitioning from their multicellular nature to a state akin to unicellular organisms. This shift leads to a breakdown in the crucial regulators inherent to multicellularity, resulting in the emergence of diverse cancer cell subpopulations that have enhanced adaptability. The presence of different cell subpopulations within a tumour, known as intratumoural heterogeneity (ITH), poses challenges for cancer treatment. In this review, we delve into the dynamics of the shift from multicellularity to unicellularity during cancer onset and progression. We highlight the role of genetic and non-genetic factors, as well as tumour microenvironment, in promoting ITH and cancer evolution. Additionally, we shed light on the latest advancements in omics technologies that allow for in-depth analysis of tumours at the single-cell level and their spatial organization within the tissue. Obtaining such detailed information is crucial for deepening our understanding of the diverse evolutionary paths of cancer, allowing for the development of effective therapies targeting the key drivers of cancer evolution

    Visualization 4: High dynamic range real-time 3D shape measurement

    No full text
    Visualization 4 Originally published in Optics Express on 04 April 2016 (oe-24-7-7337

    Visualization 2: High dynamic range real-time 3D shape measurement

    No full text
    Visualization 2 Originally published in Optics Express on 04 April 2016 (oe-24-7-7337
    corecore