1,993 research outputs found
Anisotropic resistivity of NaFeCoAs
Temperature-dependent resistivity is studied in single crystals of
iron-arsenide superconductor NaFeCoAs for electrical
current directions along, , and transverse, , to the
Fe-As layers. Doping with Co increases stability of this compound to reaction
with the environment and suppresses numerous features in both and
compared to the stoichiometric NaFeAs. Evolution of
with follows a universal trend observed in other pnictide superconductors,
exhibiting a -linear temperature dependence close to the optimal doping and
development of dependence upon further doping. in parent
compound shows a non - monotonic behavior with a crossover from non-metallic
resistivity increase on cooling from room temperature down to 80 K to a
metallic decrease below this temperature. Both and
show several correlated crossover - like features at 80 K. Despite a
general trend towards more metallic behavior of inter - plane resistivity in
Co-doped samples, the temperature of the crossover from insulating to metallic
behavior (80 K) does not change much with doping
High average power, widely tunable femtosecond laser source from red to mid-infrared based on an Yb-fiber-laser-pumped optical parametric oscillator
Doping influence of spin dynamics and magnetoelectric effect in hexagonal YLuMnO
We use inelastic neutron scattering to study spin waves and their correlation
with the magnetoelectric effect in YLuMnO. In the undoped
YMnO and LuMnO, the Mn trimerization distortion has been suggested to
play a key role in determining the magnetic structure and the magnetoelectric
effect. In YLuMnO, we find a much smaller in-plane
(hexagonal -plane) single ion anisotropy gap that coincides with a weaker
in-plane dielectric anomaly at . Since both the smaller in-plane
anisotropy gap and the weaker in-plane dielectric anomaly are coupled to a
weaker Mn trimerization distortion in YLuMnO comparing to
YMnO and LuMnO, we conclude that the Mn trimerization is responsible
for the magnetoelectric effect and multiferroic phenomenon in
YLuMnO.Comment: 5 pages, 5 figure
Temperature dependence of the resonance and low energy spin excitations in superconducting FeTeSe
We use inelastic neutron scattering to study the temperature dependence of
the low-energy spin excitations in single crystals of superconducting
FeTeSe ( K). In the low-temperature superconducting
state, the imaginary part of the dynamic susceptibility at the electron and
hole Fermi surfaces nesting wave vector ,
, has a small spin gap, a two-dimensional
neutron spin resonance above the spin gap, and increases linearly with
increasing for energies above the resonance. While the intensity
of the resonance decreases like an order parameter with increasing temperature
and disappears at temperature slightly above , the energy of the mode is
weakly temperature dependent and vanishes concurrently above . This
suggests that in spite of its similarities with the resonance in electron-doped
superconducting BaFe(Co,Ni)As, the mode in
FeTeSe is not directly associated with the superconducting
electronic gap.Comment: 7 pages, 6 figure
Magnetic anisotropy in hole-doped superconducting Ba 0.67K 0.33Fe 2As2 probed by polarized inelastic neutron scattering
We use polarized inelastic neutron scattering (INS) to study spin excitations
of optimally hole-doped superconductor BaKFeAs
( K).
In the normal state, the imaginary part of the dynamic susceptibility,
, shows magnetic anisotropy for energies below
7 meV with c-axis polarized spin excitations larger than that of the
in-plane component. Upon entering into the superconducting state, previous
unpolarized INS experiments have shown that spin gaps at 5 and 0.75 meV
open at wave vectors and , respectively, with a
broad neutron spin resonance at meV. Our neutron polarization analysis
reveals that the large difference in spin gaps is purely due to different spin
gaps in the c-axis and in-plane polarized spin excitations, resulting resonance
with different energy widths for the c-axis and in-plane spin excitations. The
observation of spin anisotropy in both opitmally electron and hole-doped
BaFeAs is due to their proximity to the AF ordered BaFeAs where
spin anisotropy exists below .Comment: 5 pages, 4 figure
- …
