33 research outputs found

    CNN or ViT? Revisiting Vision Transformers Through the Lens of Convolution

    Full text link
    The success of Vision Transformer (ViT) has been widely reported on a wide range of image recognition tasks. The merit of ViT over CNN has been largely attributed to large training datasets or auxiliary pre-training. Without pre-training, the performance of ViT on small datasets is limited because the global self-attention has limited capacity in local modeling. Towards boosting ViT on small datasets without pre-training, this work improves its local modeling by applying a weight mask on the original self-attention matrix. A straightforward way to locally adapt the self-attention matrix can be realized by an element-wise learnable weight mask (ELM), for which our preliminary results show promising results. However, the element-wise simple learnable weight mask not only induces a non-trivial additional parameter overhead but also increases the optimization complexity. To this end, this work proposes a novel Gaussian mixture mask (GMM) in which one mask only has two learnable parameters and it can be conveniently used in any ViT variants whose attention mechanism allows the use of masks. Experimental results on multiple small datasets demonstrate that the effectiveness of our proposed Gaussian mask for boosting ViTs for free (almost zero additional parameter or computation cost). Our code will be publicly available at \href{https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention}{https://github.com/CatworldLee/Gaussian-Mixture-Mask-Attention}

    Robustness of Segment Anything Model (SAM) for Autonomous Driving in Adverse Weather Conditions

    Full text link
    Segment Anything Model (SAM) has gained considerable interest in recent times for its remarkable performance and has emerged as a foundational model in computer vision. It has been integrated in diverse downstream tasks, showcasing its strong zero-shot transfer capabilities. Given its impressive performance, there is a strong desire to apply SAM in autonomous driving to improve the performance of vision tasks, particularly in challenging scenarios such as driving under adverse weather conditions. However, its robustness under adverse weather conditions remains uncertain. In this work, we investigate the application of SAM in autonomous driving and specifically explore its robustness under adverse weather conditions. Overall, this work aims to enhance understanding of SAM's robustness in challenging scenarios before integrating it into autonomous driving vision tasks, providing valuable insights for future applications

    Segment Anything Meets Universal Adversarial Perturbation

    Full text link
    As Segment Anything Model (SAM) becomes a popular foundation model in computer vision, its adversarial robustness has become a concern that cannot be ignored. This works investigates whether it is possible to attack SAM with image-agnostic Universal Adversarial Perturbation (UAP). In other words, we seek a single perturbation that can fool the SAM to predict invalid masks for most (if not all) images. We demonstrate convetional image-centric attack framework is effective for image-independent attacks but fails for universal adversarial attack. To this end, we propose a novel perturbation-centric framework that results in a UAP generation method based on self-supervised contrastive learning (CL), where the UAP is set to the anchor sample and the positive sample is augmented from the UAP. The representations of negative samples are obtained from the image encoder in advance and saved in a memory bank. The effectiveness of our proposed CL-based UAP generation method is validated by both quantitative and qualitative results. On top of the ablation study to understand various components in our proposed method, we shed light on the roles of positive and negative samples in making the generated UAP effective for attacking SAM

    Text-to-image Diffusion Model in Generative AI: A Survey

    Full text link
    This survey reviews text-to-image diffusion models in the context that diffusion models have emerged to be popular for a wide range of generative tasks. As a self-contained work, this survey starts with a brief introduction of how a basic diffusion model works for image synthesis, followed by how condition or guidance improves learning. Based on that, we present a review of state-of-the-art methods on text-conditioned image synthesis, i.e., text-to-image. We further summarize applications beyond text-to-image generation: text-guided creative generation and text-guided image editing. Beyond the progress made so far, we discuss existing challenges and promising future directions.Comment: First survey on the recent progress of text-to-image generation based on the diffusion model (under progress

    Universal Adversarial Perturbations Through the Lens of Deep Steganography: Towards A Fourier Perspective

    Full text link
    The booming interest in adversarial attacks stems from a misalignment between human vision and a deep neural network (DNN), i.e. a human imperceptible perturbation fools the DNN. Moreover, a single perturbation, often called universal adversarial perturbation (UAP), can be generated to fool the DNN for most images. A similar misalignment phenomenon has recently also been observed in the deep steganography task, where a decoder network can retrieve a secret image back from a slightly perturbed cover image. We attempt explaining the success of both in a unified manner from the Fourier perspective. We perform task-specific and joint analysis and reveal that (a) frequency is a key factor that influences their performance based on the proposed entropy metric for quantifying the frequency distribution; (b) their success can be attributed to a DNN being highly sensitive to high-frequency content. We also perform feature layer analysis for providing deep insight on model generalization and robustness. Additionally, we propose two new variants of universal perturbations: (1) Universal Secret Adversarial Perturbation (USAP) that simultaneously achieves attack and hiding; (2) high-pass UAP (HP-UAP) that is less visible to the human eye.Comment: Accepted to AAAI 202

    CD-UAP: Class Discriminative Universal Adversarial Perturbation

    Full text link
    A single universal adversarial perturbation (UAP) can be added to all natural images to change most of their predicted class labels. It is of high practical relevance for an attacker to have flexible control over the targeted classes to be attacked, however, the existing UAP method attacks samples from all classes. In this work, we propose a new universal attack method to generate a single perturbation that fools a target network to misclassify only a chosen group of classes, while having limited influence on the remaining classes. Since the proposed attack generates a universal adversarial perturbation that is discriminative to targeted and non-targeted classes, we term it class discriminative universal adversarial perturbation (CD-UAP). We propose one simple yet effective algorithm framework, under which we design and compare various loss function configurations tailored for the class discriminative universal attack. The proposed approach has been evaluated with extensive experiments on various benchmark datasets. Additionally, our proposed approach achieves state-of-the-art performance for the original task of UAP attacking all classes, which demonstrates the effectiveness of our approach
    corecore