3,632 research outputs found

    Central Speed of Sound, Trace Anomaly and Observables of Neutron Stars from Perturbative Analyses of Scaled TOV Equations

    Full text link
    The central speed of sound (SS) measures the stiffness of the Equation of State (EOS) of superdense neutron star (NS) matter. Its variations with density and radial coordinate in NSs in conventional analyses often suffer from uncertainties of the specific nuclear EOSs used. Using the central SS and NS mass/radius scaling obtained from solving perturbatively the scaled Tolman-Oppenheimer-Volkoff (TOV) equations, we study the variations of SS, trace anomaly and several closely related properties of NSs in an EOS-model independent manner. We find that the SS increases with the reduced central pressure P^cPc/εc\widehat{P}_{\rm{c}}\equiv P_{\rm{c}}/\varepsilon_{\rm{c}} (scaled by the central energy density εc\varepsilon_{\rm{c}}), and the conformal bound for SS is violated for NSs with masses higher than about 1.9M_{\odot}. The ratio P/εP/\varepsilon is upper bounded as P/ε0.374P/\varepsilon\lesssim0.374 around the centers of stable NSs. We demonstrate that it is an intrinsic property of strong-field gravity and is more relevant than the perturbative QCD bound on it. While a sharp phase transition at high densities characterized by a sudden vanishing of SS in cores of massive NSs are basically excluded, the probability for a continuous crossover signaled by a peaked radial profile of SS is found to be enhanced as P^c\widehat{P}_{\rm{c}} decreases, implying it likely happens near the centers of massive NSs. Moreover, a new and more stringent causality boundary as Rmax/km4.73MNSmax/M+1.14R_{\max}/\rm{km}\gtrsim 4.73M_{\rm{NS}}^{\max}/M_{\odot}+1.14 for NS M-R curve is found to be excellently consistent with observational data on NS masses and radii. Furthermore, new constraints on the ultimate energy density and pressure allowed in NSs before collapsing into black holes are obtained and compared with earlier predictions in the literature.Comment: 23 page

    Ultrathin Oxide Wrapping of Plasmonic Nanoparticles via Colloidal Electrostatic Self-Assembly and their Enhanced Performances

    Get PDF
    Ultrathin and uniform oxide layer-wrapped plasmonic nanoparticles (NPs) have been expected in the fields of light energy conversion and optical sensing fields. In this chapter, we proposed a universal strategy to prepare such core-shell plasmonic NPs based on colloidal electrostatic attraction and self-assembly procedures. Based on the self-assembly strategy, laser ablation of metal targets in liquid medium was conducted at room temperature to one-pot fabricate the oxide-wrapped plasmonic NPs. It demonstrates that a series of core-shell nanostructured NPs such as Au@Fe2O3, Au@Al2O3, Au@CuO, Au@ZnO, Pt@TiO2, and Pd@TiO2, have been readily obtained free of contaminations. Technical analyses illustrate that those composite NPs possess uniform and symmetrical oxides layers with several nanometers in thickness. Furthermore, both the thickness and crystallinity of the oxides layer could be precisely tailored simply by controlling hydrolysis of precursors and irradiation durations. Finally, due to ultrathin wrapping of oxides, the as-obtained core-shell plasmonic NPs show excellent surface-enhanced Raman scattering (SERS) and gas-sensing performances compared with bare metal or oxides NPs

    Compact tunable lowpass filter with sharp roll-off and low insertion loss

    Full text link
    © 2017 Wiley Periodicals, Inc. A novel continuously tunable lowpass filter (LPF) with compact size, sharp roll-off and low insertion loss is presented in this paper. The filter employs two varactor diodes, a pair of open-ended coupled lines and a U-shape step impedance line (SIL) with an open-ended stub loaded at the center of the SIL to form a very compact layout. The odd- and even-mode analysis and equivalent circuit model are demonstrated for estimation of the transmission characteristics. Tuning the DC voltage applied on the varactor diodes, the varactor capacitance accordingly changes leading to a varying cutoff frequency fc. The measured results show that the achieved 3-dB fc tuning range is 60.6% (1.15–2.15 GHz). The measured insertion loss (IL) and roll-off rate are 0.2-0.4 dB and 50–73 dB/GHz, respectively. The overall size of the LPF is only 0.005λg2, which shows a competitive advantage comparing with the state-of-the-art work

    Implementing universal nonadiabatic holonomic quantum gates with transmons

    Get PDF
    Geometric phases are well known to be noise-resilient in quantum evolutions/operations. Holonomic quantum gates provide us with a robust way towards universal quantum computation, as these quantum gates are actually induced by nonabelian geometric phases. Here we propose and elaborate how to efficiently implement universal nonadiabatic holonomic quantum gates on simpler superconducting circuits, with a single transmon serving as a qubit. In our proposal, an arbitrary single-qubit holonomic gate can be realized in a single-loop scenario, by varying the amplitudes and phase difference of two microwave fields resonantly coupled to a transmon, while nontrivial two-qubit holonomic gates may be generated with a transmission-line resonator being simultaneously coupled to the two target transmons in an effective resonant way. Moreover, our scenario may readily be scaled up to a two-dimensional lattice configuration, which is able to support large scalable quantum computation, paving the way for practically implementing universal nonadiabatic holonomic quantum computation with superconducting circuits.Comment: v3 Appendix added, v4 published version, v5 published version with correction

    Experimental Investigation of Forchheimer Coefficients for Non-Darcy Flow in Conglomerate-Confined Aquifer

    Get PDF
    The research is financially supported by the National Key Research and Development Program of China (No. 2016YFC0801401 and No. 2016YFC0600708), Major Consulting Project of Chinese Academy of Engineering (No. 2017-ZD-2), Yue Qi Distinguished Scholar Project of China University of Mining & Technology (Beijing), and Fundamental Research Funds for the Central Universities (No. 2009QM01).Peer reviewedPublisher PD

    RFormer: Transformer-based Generative Adversarial Network for Real Fundus Image Restoration on A New Clinical Benchmark

    Full text link
    Ophthalmologists have used fundus images to screen and diagnose eye diseases. However, different equipments and ophthalmologists pose large variations to the quality of fundus images. Low-quality (LQ) degraded fundus images easily lead to uncertainty in clinical screening and generally increase the risk of misdiagnosis. Thus, real fundus image restoration is worth studying. Unfortunately, real clinical benchmark has not been explored for this task so far. In this paper, we investigate the real clinical fundus image restoration problem. Firstly, We establish a clinical dataset, Real Fundus (RF), including 120 low- and high-quality (HQ) image pairs. Then we propose a novel Transformer-based Generative Adversarial Network (RFormer) to restore the real degradation of clinical fundus images. The key component in our network is the Window-based Self-Attention Block (WSAB) which captures non-local self-similarity and long-range dependencies. To produce more visually pleasant results, a Transformer-based discriminator is introduced. Extensive experiments on our clinical benchmark show that the proposed RFormer significantly outperforms the state-of-the-art (SOTA) methods. In addition, experiments of downstream tasks such as vessel segmentation and optic disc/cup detection demonstrate that our proposed RFormer benefits clinical fundus image analysis and applications. The dataset, code, and models are publicly available at https://github.com/dengzhuo-AI/Real-FundusComment: IEEE J-BHI 2022; The First Benchmark and First Transformer-based Method for Real Clinical Fundus Image Restoratio
    corecore