15 research outputs found

    Avian Influenza A H7N9 Virus Induces Severe Pneumonia in Mice without Prior Adaptation and Responds to a Combination of Zanamivir and COX-2 Inhibitor

    Get PDF
    Background Human infection caused by the avian influenza A H7N9 virus has a case-fatality rate of over 30%. Systematic study of the pathogenesis of avian H7N9 isolate and effective therapeutic strategies are needed. Methods BALB/c mice were inoculated intranasally with an H7N9 virus isolated from a chicken in a wet market epidemiologically linked to a fatal human case, (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]), and with an H7N9 virus isolated from a human (A/Anhui/01/2013 [AH1]). The pulmonary viral loads, cytokine/chemokine profiles and histopathological changes of the infected mice were compared. The therapeutic efficacy of a non-steroidal anti-inflammatory drug (NSAID), celecoxib, was assessed. Results Without prior adaptation, intranasal inoculation of 106 plaque forming units (PFUs) of CK1 caused a mortality rate of 82% (14/17) in mice. Viral nucleoprotein and RNA expression were limited to the respiratory system and no viral RNA could be detected from brain, liver and kidney tissues. CK1 caused heavy alveolar inflammatory exudation and pulmonary hemorrhage, associated with high pulmonary levels of proinflammatory cytokines. In the mouse lung cell line LA-4, CK1 also induced high levels of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA. Administration of the antiviral zanamivir did not significantly improve survival in mice infected with CK1, but co-administration of the non-steroidal anti-inflammatory drug (NSAID) celecoxib in combination with zanamivir improved survival and lung pathology. Conclusions Our findings suggested that H7N9 viruses isolated from chicken without preceding trans-species adaptation can cause lethal mammalian pulmonary infection. The severe proinflammatory responses might be a factor contributing to the mortality. Treatment with combination of antiviral and NSAID could ameliorate pulmonary inflammation and may improve survival.published_or_final_versio

    Wild type and mutant 2009 pandemic influenza A (H1N1) viruses cause more severe disease and higher mortality in pregnant BALB/c mice

    Get PDF
    Background: Pregnant women infected by the pandemic influenza A (H1N1) 2009 virus had more severe disease and higher mortality but its pathogenesis is still unclear. Principal Findings: We showed that higher mortality, more severe pneumonitis, higher pulmonary viral load, lower peripheral blood T lymphocytes and antibody responses, higher levels of proinflammatory cytokines and chemokines, and worse fetal development occurred in pregnant mice than non-pregnant controls infected by either wild type (clinical isolate) or mouse-adapted mutant virus with D222G substitution in hemagglutinin. These disease-associated changes and the lower respiratory tract involvement were worse in pregnant mice challenged by mutant virus. Though human placental origin JEG-3 cell line could be infected and proinflammatory cytokines or chemokines were elevated in amniotic fluid of some mice, no placental or fetal involvement by virus were detected by culture, real-time reverse transcription polymerase chain reaction or histopathological changes. Dual immunofluorescent staining of viral nucleoprotein and type II alveolar cell marker SP-C protein suggested that the majority of infected alveolar epithelial cells were type II pneumocytes. Conclusion: The adverse effect of this pandemic virus on maternal and fetal outcome is largely related to the severe pulmonary disease and the indirect effect of inflammatory cytokine spillover into the systemic circulation. © 2010 Chan et al.published_or_final_versio

    Age-specific incidence rate in severe or symptomatic infection due to pandemic H1N1 2009 influenza virus

    Get PDF
    Poster Abstract Session - Influenza and H1N1 Diagnosis, Epidemiology, and Viral Outcome: abstract no. 1133BACKGROUND: Age-specific incidence of the 2009 pandemic influenza provides the scientific basis of public health policies and the basic science research on the age-related susceptibility to influenza. While previous epidemiological studies provided vital information for public health policies, most did not incorporate age-specific data of asymptomatic, symptomatic and severe infection in the analysis. In this study, we incorporated data from seroprevalence and microbiologically-confirmed infection to estimate the relative impact of the pandemic influenza on various age groups. METHODS: For the determination of pre-pandemic and post-pandemic seroprevalence, archived plasma samples randomly collected at the clinical biochemistry department of Queen Mary Hospital in the years 2007 and 2010 were used respectively. Microbiologically-confirmed cases and severe cases reported to the Centre for Health Protection (CHP) from May 1, 2009 to May 23, 2010 were included in our analysis. This study was approved by the institutional review board of the Hospital Authority of Hong Kong. RESULTS: 795 and 1000 plasma samples were collected in 2007 and 2010 respectively. In 2007, 8.7% and 14.2% of individuals had HI titers ≥40 and ≥10 respectively. The pre-existing cross-reactive antibodies were mainly found in patients aged >70 years old. In 2010, the overall proportion of individuals with HI titers ≥40 and ≥10 is 23.2% and 42.2%. The highest overall microbiologically-confirmed incidence rate was found in the 0-10 year age group, and decreased with increasing age (ρ=-1.0, p<0.01). A total of 282 severe cases were reported with a mean age was 47.6 years. The incidence rate of severe cases showed an apparent bimodal age distribution, with higher incidence rate in the age group 0-10 and those older than 50 years old, and the highest incidence rate being those between 51 and 60 years old. CONCLUSION: While the young adults were most commonly infected, the clinical consequence is most alarming in children and older adults aged over 50 years. Public policies should continue to target this high risk group.published_or_final_versionThe 49th Annual Meeting of the Infectious Diseases Society of America (IDSA 2011), Boston, MA., 20-23 October 2011

    Toll-like receptor 7 agonist imiquimod in combination with influenza vaccine expedites and augments humoral immune responses against influenza A(H1N1)pdm09 virus infection in BALB/c mice

    No full text
    Toll-like receptors (TLRs) of the innate immune system are known targets for enhancing vaccine efficacy. We investigated whether imiquimod, a synthetic TLR7 agonist, can expedite the immune response against influenza virus infection when combined with influenza vaccine. BALB/c mice were immunized intraperitoneally with monovalent A(H1N1)pdm09 vaccine combined with imiquimod (VCI) prior to intranasal inoculation with a lethal dose of mouse-adapted A(H1N1)pdm09 virus. For mice immunized 3 days before infection, the survival rates were significantly higher in the VCI group (60%, mean survival time[MST], 11 days) than in the vaccine-alone (30%; MST, 8.8 days), imiquimod-alone (5%; MST, 8.4 days), and phosphate-buffered saline (PBS) (0%; MST, 6.2 days) groups (P < 0.01). In the VCI group, 45 and 35% of the mice survived even when they were infected 2 days or 1 day after immunization. Virus-specific serum IgM, IgG, and neutralizing antibodies appeared earlier with higher geometric mean titers in the VCI group than in the control groups. The pulmonary viral load was significantly lower at all time points postinfection in the VCI, vaccine-alone, and imiquimod-alone groups than in the PBS control group (P < 0.05). The protection induced by VCI was specific for A(H1N1)pdm09 virus but not for A(H5N1) virus. Since imiquimod combined with RNase-treated vaccine is as protective as imiquimod combined with untreated vaccine, mechanisms other than TLR7 may operate in expediting and augmenting immune protection. Moreover, increased gamma interferon mRNA expression and IgG isotype switching, which are markers of the Th1 response induced by imiquimod, were not apparent in our mouse model. The mechanisms of imiquimod-induced immune protection deserve further study. Copyright © 2014, American Society for Microbiology. All Rights Reserved.link_to_OA_fulltex

    High titer and avidity of nonneutralizing antibodies against influenza vaccine antigen are associated with severe influenza

    No full text
    The importance of neutralizing antibody in protection against influenza virus is well established, but the role of the early antibody response during the initial stage of infection in affecting the severity of disease is unknown. The 2009 influenza pandemic provided a unique opportunity for study because most patients lacked preexisting neutralizing antibody. In this study, we compared the antibody responses of 52 patients with severe or mild disease, using sera collected at admission. A microneutralization (MN) assay was used to detect neutralizing antibody. We also developed an enzyme-linked immunosorbent assay (ELISA) which detects both neutralizing and nonneutralizing antibodies against viral antigens from a split-virion inactivated monovalent influenza virus vaccine. While the MN titers were not significantly different between the two groups (P = 0.764), the ELISA titer and ELISA/MN titer ratio were significantly higher for patients with severe disease than for those with mild disease (P = 0.004 and P = 0.011, respectively). This finding suggested that in patients with severe disease, a larger proportion of serum antibodies were antibodies with no detectable neutralizing activity. The antibody avidity was also significantly higher in patients with severe disease than in those with mild disease (P < 0.05). Among patients with severe disease, those who required positive pressure ventilation (PPV) had significantly higher ELISA titers than those who did not require PPV (P < 0.05). Multivariate analysis showed that the ELISA titer and antibody avidity were independently associated with severe disease. Higher titers of nonneutralizing antibody with higher avidity at the early stage of influenza virus infection may be associated with worse clinical severity and poorer outcomes. Copyright © 2012, American Society for Microbiology. All Rights Reserved.link_to_OA_fulltex

    D225G mutation in hemagglutinin of pandemic influenza H1N1 (2009) virus enhances virulence in mice

    No full text
    Although the majority of infections by the pandemic influenza H1N1 (2009) virus is mild, a higher mortality occurs in young adults with no risk factors for complications. Some of these severe cases were infected by the virus with an aspartate to glycine substitution at 225 position (D225G, H3 numbering) in the hemagglutinin (HA). Previous studies with the highly virulent 1918 pandemic H1N1 virus suggested that such substitution was associated with a dual binding specificity of the virus for both α2,3- and α2,6-linked sialic acid receptors on host cells. Thus, the D225G mutant may cause more severe disease with its increased predilection for the lower respiratory tract, where the α2,3 sialic acid receptor is more prevalent, but this hypothesis has not been investigated. We obtained a mutant virus after four sequential passages in lungs of BALB/c mice with a wild-type pandemic influenza A H1N1 (2009) virus. One plaque purified mutant virus had a single non-synonymous D225G mutation in the HA gene. This mutant was more lethal to chick embryo and produced a viral load of about two log higher than that of the wild-type parental virus during the first 24 h. A pathogenicity test showed that the 50% lethal dose in mice (LD50) was reduced from over 2 × 10 6 plaque-forming units (PFU) with the parental virus to just 150 PFU with the mutant virus. The survival of mice challenged with the mutant virus was significantly decreased when compared with the parental virus (P < 0.0001). Significantly higher viral titers and elevated proinflammatory cytokines in lung homogenates of mice infected with the mutant virus were found, which were compatible with severe histopathological changes of pneumonitis. The only consistent mutation in the genomes of viral clones obtained from dying mice was D225G substitution. Copyright © 2010 by the Society for Experimental Biology and Medicine.link_to_subscribed_fulltex

    Recombinant influenza A virus hemagglutinin HA2 subunit protects mice against influenza A(H7N9) virus infection

    No full text
    A novel avian influenza A(H7N9) virus has emerged to infect humans in eastern China since 2013. An effective vaccine is needed because of the high mortality despite antiviral treatment and intensive care. We sought to develop an effective vaccine for A(H7N9) virus. The HA2 subunit was chosen as the vaccine antigen because it is highly conserved among the human A(H7N9) virus strains. Moreover, in silico analysis predicted two immunogenic regions within the HA2 subunit that may contain potential human B-cell epitopes. The HA2 fragment was readily expressed in Escherichia coli. In BALB/c mice, intraperitoneal immunization with two doses of HA2 with imiquimod (2-dose-imiquimod) elicited the highest geometric mean titer (GMT) of anti-HA2 IgG (12699), which was greater than that of two doses of HA2 without imiquimod (2-dose-no-adjuvant) (6350), one dose of HA2 with imiquimod (1-dose-imiquimod) (2000) and one dose of HA2 without imiquimod (1-dose-no-adjuvant) (794). The titer of anti-HA2 IgG was significantly higher in the 1-dose-imiquimod group than the 1-dose-no-adjuvant group. Although both hemagglutination inhibition titers and microneutralization titers were below 10, serum from immunized mice showed neutralizing activity in a fluorescent focus microneutralization assay. In a viral challenge experiment, the 2-dose-imiquimod group had the best survival rate (100 %), followed by the 2-dose-no-adjuvant group (90 %), the 1-dose-imiquimod group (70 %) and the 1-dose-no-adjuvant group (40 %). The 2-dose-imiquimod group also had significantly lower mean pulmonary viral loads than the 1-dose-imiquimod, 1-dose-no-adjuvant and non-immunized groups. This recombinant A(H7N9)-HA2 vaccine should be investigated as a complement to egg- or cell-based live attenuated or subunit influenza vaccines. © 2015, Springer-Verlag Wien

    Feline morbillivirus, a previously undescribed paramyxovirus associated with tubulointerstitial nephritis in domestic cats

    No full text
    We describe the discovery and isolation of a paramyxovirus, feline morbillivirus (FmoPV), from domestic cat (Felis catus). FmoPV RNA was detected in 56 (12.3%) of 457 stray cats (53 urine, four rectal swabs, and one blood sample) by RT-PCR. Complete genome sequencing of three FmoPV strains showed genome sizes of 16,050 bases, the largest among morbilliviruses, because of unusually long 5′ trailer sequences of 400 nt. FmoPV possesses identical gene contents (3′-N-P/V/C-M-F-H-L-5′) and is phylogenetically clustered with other morbilliviruses. IgG against FmoPV N protein was positive in 49 sera (76.7%) of 56 RT-PCR-positive cats, but 78 (19.4%) of 401 RT-PCR-negative cats (P < 0.0001) byWestern blot. FmoPV was isolated from CRFK feline kidney cells, causing cytopathic effects with cell rounding, detachment, lysis, and syncytia formation. FmoPV could also replicate in subsequent passages in primate Vero E6 cells. Infected cell lines exhibited finely granular and diffuse cytoplasmic fluorescence on immunostaining for FmoPV N protein. Electron microscopy showed enveloped virus with typical "herringbone" appearance of helical N in paramyxoviruses. Histological examination of necropsy tissues in two FmoPV-positive cats revealed interstitial inflammatory infiltrate and tubular degeneration/necrosis in kidneys, with decreased cauxin expression in degenerated tubular epithelial cells, compatible with tubulointerstitial nephritis (TIN). Immunohistochemical staining revealed FmoPV N protein-positive renal tubular cells and mononuclear cells in lymph nodes. A case-control study showed the presence of TIN in seven of 12 cats with FmoPV infection, but only two of 15 cats without FmoPV infection (P < 0.05), suggesting an association between FmoPV and TIN.link_to_OA_fulltex
    corecore