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Abstract

Background: Human infection caused by the avian influenza A H7N9 virus has a case-fatality rate of over 30%. Systematic
study of the pathogenesis of avian H7N9 isolate and effective therapeutic strategies are needed.

Methods: BALB/c mice were inoculated intranasally with an H7N9 virus isolated from a chicken in a wet market
epidemiologically linked to a fatal human case, (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]), and with an H7N9 virus
isolated from a human (A/Anhui/01/2013 [AH1]). The pulmonary viral loads, cytokine/chemokine profiles and
histopathological changes of the infected mice were compared. The therapeutic efficacy of a non-steroidal anti-
inflammatory drug (NSAID), celecoxib, was assessed.

Results: Without prior adaptation, intranasal inoculation of 106 plaque forming units (PFUs) of CK1 caused a mortality rate of
82% (14/17) in mice. Viral nucleoprotein and RNA expression were limited to the respiratory system and no viral RNA could
be detected from brain, liver and kidney tissues. CK1 caused heavy alveolar inflammatory exudation and pulmonary
hemorrhage, associated with high pulmonary levels of proinflammatory cytokines. In the mouse lung cell line LA-4, CK1 also
induced high levels of interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2) mRNA. Administration of the antiviral zanamivir did
not significantly improve survival in mice infected with CK1, but co-administration of the non-steroidal anti-inflammatory
drug (NSAID) celecoxib in combination with zanamivir improved survival and lung pathology.

Conclusions: Our findings suggested that H7N9 viruses isolated from chicken without preceding trans-species adaptation
can cause lethal mammalian pulmonary infection. The severe proinflammatory responses might be a factor contributing to
the mortality. Treatment with combination of antiviral and NSAID could ameliorate pulmonary inflammation and may
improve survival.
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Background

Avian influenza A H7N9 virus infecting human first emerged in

China in February 2013 [1–3]. It is associated with a crude case-

fatality rate of over 30% in humans despite of oseltamivir

treatment [4]. Severe human infections were characterized by

rapidly progressive acute community-acquired pneumonia, multi-

organ dysfunction and cytokine dysregulation, which did not

respond to treatment with antibiotics against typical and atypical

pneumonic pathogens [5]. Similar to the influenza A H5N1 and

other avian influenza viruses, most patients with H7N9 infection

had a history of direct or occupational contact with poultry or

visits to wet market [1,6–8]. Phylogenetic analysis showed that this

H7N9 virus is a novel triple reassortant virus comprising of

hemagglutinin (HA) gene from H7N3, neuraminidase (NA) gene

from H7N9 and internal genes from H9N2 [9,10]. Some of the

human isolates already harboured genetic mutations of the

polymerase PB2 gene which favour mammalian adaptation, and
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mutations of the hemagglutinin (HA) gene which increase its

binding affinity for human type a-2,6 sialic acid linked receptors

[3]. Novel reassortants have emerged in Southern China, which

contained additional potential virulence markers [11].

Since most patients had poultry contact and the internal gene

segments are closely related to H9N2 isolated from domestic

poultries, it has been postulated that H7N9 virus from wild birds

first entered the domestic poultry population, reassorted with other

avian influenza viruses, acquired the characteristics for adaptation

to humans and finally infected humans [3,12,13]. One major

question is whether H7N9 virus isolated from poultry can directly

infect humans. Mice and ferrets have been used as surrogates to

study the pathogenicity of the 2013 H7N9 viruses in mammals.

Several studies have shown that the human H7N9 virus A/Anhui/

1/2013 (AH1), which was isolated from a fatal human case [2],

could cause death in mice without prior adaptation [14–18], while

another human H7N9 virus A/Shanghai/2/2013 did not lead to

death in mice [19]. On the other hand, H7N9 viruses isolated

from poultries or wild birds appeared to be less virulent in mouse

models. H7N9 viruses isolated from one chicken and two pigeons

of China in 2013 did not cause any signs of disease [18]. H7N9

viruses isolated from a duck of Japan in 2011 and from a shoveler

of Egypt in 2007 caused fatal disease in mice, but the 50% mouse

lethal doses (MLD50) were much higher than that of the human

H7N9 isolates [14,17].

In our previous study, we have isolated an H7N9 virus from a

chicken (A/chicken/Zhejiang/DTID-ZJU01/2013 [CK1]) in a

wet market epidemiologically linked to a patient with fatal H7N9

infection [1]. Since the patient likely acquired the H7N9 virus

from the market, we postulate that CK1 may cause severe disease

in mammals without further adaptation. In this study, we assessed

the viral tropism and replication, histopathological changes and

the host cytokine/chemokine response in CK1-infected mice. The

human virus AH1 was used for comparison. Furthermore, we

studied the treatment effect of a combination of neuraminidase

inhibitor zanamivir and non-steroidal anti-inflammatory drug

(NSAID) celecoxib in a BALB/c mouse model because combina-

tion treatment of zanamivir and celecoxib improved the survival of

mice infected with H5N1 virus whereas zanamivir alone was

significantly less effective [20].

Results

Chicken H7N9 virus CK1 caused severe lung
inflammation and fatal outcome in mice without prior
adaptation

CK1 and AH1 were propagated in chicken embryos, and the

viral titres in the allantoic fluid were determined in Madin Darby

canine kidney (MDCK) cells. The viral titres were 108.2 tissue

culture infective doses (TCID50) per ml and 107.66 plaque forming

units (PFU) per ml for CK1, and 108.8 TCID50 per ml and 108.4

PFU per ml for AH1. Next, we determined the MLD50 of CK1 in

BALB/c mice, and compared to that of AH1. CK1 caused lethal

infection with a mortality rate of 83% (5/6) at inoculation dose of

106 PFU which was the highest dose that could be tested in this

study, but no mice died when infected with 105, 104 or 103 PFU.

The MLD50 dose of CK1 could only be assumed to be between

105-106 PFU, while the MLD50 dose for AH1 was determined to

be 104.8 PFU. This indicated that CK1 is less virulent in mice than

AH1. Since 106 PFU of CK1 and 105 PFU of human AH1 caused

similar rate of mortality in mice, we used these doses in the

subsequent experiments for the study of pathogenesis.

As shown in Fig. 1, significant morbidity and mortality were

observed in CK1-infected mice during the 14-day study period.

Two to three days after infection, the mice started to show disease

symptoms of ruffled fur before developing laboured breathing and

loss of body weight (Fig. 1a). The mortality rates were 82% (14/

17) for CK1 and 90% (18/20) for AH1 (Fig. 1b).

Histopathological findings of lung tissues from infected mice

were examined, scored, and compared with those of non-infected

mice (Fig. 2). At day 2 post-infection (p.i.), CK1-infected mouse

lungs showed a typical and severe viral pneumonia with focal

perivascular and peribronchiolar interstitial lymphocytes, mono-

cyte/macrophages infiltration and vascular congestion. One

notable feature was the widely distributed bronchial and

bronchiolar epithelial cells necrosis (Fig. 2c and 2d). At day 4

p.i., the inflammatory and necrotic changes affected larger areas of

the lung including walls of alveoli (Fig. 2e and 2f). These changes

became more severe at day 6 p.i., and were accompanied by

alveolar hemorrhage (Fig. 2g and 2h). Pulmonary vascular

endothelial damage, vascular thrombosis and perivascular edema

could be seen in some of the infected lungs (data not shown). The

type of pulmonary pathological changes in CK1 was similar to

AH1-infected mouse lungs. There was no significant difference in

the semi-quantitative histological scores between CK1 and AH1

infection (Table 1).

CK1 infected multiple cell types in the mouse respiratory
tract

To determine the tissue tropism of CK1, immunostaining was

performed using antibody targeting the influenza nucleoprotein

(NP). AH1-infected mice were used as the control. Immunostain-

ing of lung tissues from uninfected mice with mouse anti-NP

antibody showed that there was no non-specific staining (Fig. 3A,

a and b). CK1 and AH1 infected various cell types in the mouse

respiratory tract from trachea to the alveoli (Fig. 3A, c to h). NP-

positive stainings were seen in the epithelial cells of the trachea

(Fig. 3A, e and f), bronchioles and alveolar pneumocytes (Fig. 3A,

g and h). Morphologically, NP-positive cells in alveoli were mainly

type II pneumocytes. No differences in the distribution and cell

types of NP-positive cells were observed between CK1- and AH1-

infected lungs. However, even at 10-times higher inoculation dose,

CK1-infected mice had a persistently lower pulmonary viral load

from day 2 p.i. to day 6 p.i when compared to those infected by

AH1 using both quantitative reverse transcriptase-polymerase

chain reaction (RT-PCR) and TCID50 assay (P,0.01 or ,0.05,

Fig. 3B). This may suggest that CK1 did not replicate as efficiently

as AH1 in mouse lungs.

To determine whether chicken H7N9 virus could disseminate

outside the respiratory system, viral RNA detection was performed

by quantitative RT-PCR in brain, liver and kidney tissues. No

viral genome RNA was detectable in these tissues, suggesting the

absence of extrapulmonary viral replication. But on day 6 p.i.,

degenerative changes in liver, heart and kidney including

hepatocytes degeneration and focal cells necrosis (Fig. 4b and

4c), kidney tubular epithelial cells degeneration and peri-tubular

vessels congestion (Fig. 4e and 4f), and myocardial cell swelling

with red blood cells infiltrating between myocardial fibers, were

observed (Fig. 4h and 4i).

CK1 induced high level of pulmonary proinflammatory
cytokines and chemokines

To study the cytokine/chemokine response after CK1 infection,

the pulmonary protein levels of proinflammatory cytokine

interleukin-1b (IL-1b) and IL-6, anti-inflammatory cytokine

interleukin-10 (IL-10), and the chemokine ‘‘regulated on activation

normal T cell expressed and presumably secreted’’ (RANTES)

Avian H7N9 Infection in Mice
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Figure 1. Body weight changes (a) and survival rate (b) of the BALB/c mice infected with 106 PFU of A/chicken/Zhejiang/DTID-
ZJU01/2013(H7N9) (CK1, ) or 105 PFU of A/Anhui/1/2013(H7N9) (AH1, e) via intranasal route. Body weight and survival were
monitored for 14 days after virus infection. Data shown are the average of three experiments (n = 17 for CK1 and n = 20 for AH1 group).
doi:10.1371/journal.pone.0107966.g001

Table 1. Average histological score of CK1- and AH1-infected mouse lung tissues*.

Histological changes CK1 AH1

Day 2 p.i. (n = 3) Day 4 p.i. (n = 3) Day 6 p.i. (n = 3) Day 2 p.i. (n = 3) Day 4 p.i. (n = 3) Day 6 p.i. (n = 3)

Necrosis 2.6 3.3 2.6 2.3 3.3 3.6

Infiltration 2.6 3.8 4.0 3.0 3.1 4.0

Hemorrhage 1.0 2.3 2.6 1.0 1.6 2.0

p.i.: post-infection.
*Details of the histological scores are presented in Table 2.
doi:10.1371/journal.pone.0107966.t001

Avian H7N9 Infection in Mice
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were determined by enzyme immunoassay. CK1 induced high

pulmonary levels of proinflammatory cytokine IL-1b, IL-6 and

chemokine RANTES at all studied time points after infection

(Fig. 5A). Compared to AH1, CK1 induced significantly higher

IL-1b and IL-6 on day 4 p.i (P,0.05). The anti-inflammatory

cytokine IL-10 only increased on day 6 p.i in both AH1 and CK1

infection, but at a significantly lower level in CK1-infected mice

(P,0.05).

Since the detection of interferon production is not sensitive

enough by enzyme immunoassay, we determined the mRNA

levels of interferon-a (IFN-a), interferon-b (IFN-b) and interferon-

c (IFN-c) in mouse lung homogenates using quantitative RT-PCR

[21]. On day 2 p.i, more than 50-fold increase of IFN-b mRNA

levels were observed in CK1-infected mice, which was significantly

higher than that of AH1-infected mice (p,0.05). There was no

significant difference in the IFN-a and IFN-c mRNA levels

between CK1 and AH1 (Fig. 5B).

We have previously reported that upregulation of cyclooxygen-

ase 2 (COX-2) gene played an important role in the pathogenesis

of avian H5N1 virus infection [20]. Therefore, we tested the

COX-2 gene expression in mouse lungs after H7N9 infection.

There was a surge of the level of COX-2 mRNA on day 1 p.i. with

about 20-fold increase in CK1-infected lung tissues (Fig. 5B).

However, the difference in COX-2 mRNA levels between CK1

and AH1-infected samples did not reach statistical significance.

Figure 2. Histopathological changes in the lung tissue infected with CK1 or AH1. Representative histological images of haematoxylin and
eosin (H&E) stained lung tissue sections of normal mouse lung (a, and amplified image b) and infected mouse lung at various time points post
infection (c-h). Mouse lung at day 2 p.i. showed peribronchiolar interstitial infiltration, bronchiole epithelial cell necrosis and necrotic cell debris within
alveolar lumens (c, CK1 infection; d, AH1 infection). At day 4 p.i, mouse lung showed alveolar space exudation, bronchiole epithelial cell necrosis,
alveolar cell necrosis and destruction of alveolar wall (e and f). At day 6 p.i., alveolar exudation, infiltration, hyaline membrane formation and alveolar
hemorrhage with red blood cells within the alveolar space (g and h). Original magnification 6100.
doi:10.1371/journal.pone.0107966.g002

Avian H7N9 Infection in Mice
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The above findings suggest that although CK1 did not replicate

as efficiently as AH1 in mouse lung, CK1 induced higher levels of

proinflammatory response in infected mice than that of AH1. To

test this finding, we performed an in vitro study using mouse lung

epithelial cell line LA-4. After virus inoculation, CK1 and AH1

replicated to a comparable level in LA-4 cells (Fig. 5C, top panel),

but CK1 induced significantly higher expression mRNA levels of

IL-6 and COX-2 at 6 and 9 hours p.i. than AH1 (P,0.05).

Combination of celecoxib and zanamivir could
ameliorate lung inflammation and improve survival

Most H7N9 isolates are susceptible to neuraminidase inhibitors

in enzymatic assay [14,15], but the efficacy is poor in patients with

delayed treatment. Mouse experiments demonstrated that neur-

aminidase inhibitor was only effective when administered within

24 hours after virus infection [14,15]. We investigated whether

COX-2 inhibitor celecoxib with or without neuraminidase

inhibitor, zanamivir, could lower the overwhelming inflammatory

responses and improve survival in mice infected with CK1 as in

the case of H5N1 infection. When administered at 48 hours p.i.,

treatment with celecoxib-zanamivir combination had the highest

survival rate, with 70% (7/10) survival and a mean survival time

(MST) of 12.6 days, while the untreated control mice only had

18% (3/17) survival (p = 0.0059) (Fig. 6a). The survival rate of the

celecoxib-zanamivir combination group was significantly higher

than that of zanamivir alone (p = 0.0013) or celecoxib alone

(p = 0.0037). All the mice in the zanamivir alone group and

celecoxib alone group succumbed to the infection. At day 4 p.i., all

three treatment groups (zanamivir and celecoxib combination,

zanamivir alone or celecoxib alone group) showed a trend of

reduction in the pulmonary levels of proinflammatory cytokine IL-

6, IL-1b and RANTES although this reduction was not statistically

significant (Fig. 7a). There was no difference in the pulmonary

viral load among all groups at day 4 p.i. (Fig. 7b). Compared with

the diffuse alveolar infiltration and exudation in untreated mice

(Fig. 7c), mice in the celecoxib-zanamivir combination group

showed mainly mild bronchiolitis with peribronchiolar lympho-

cytic infiltration, adjacent mild alveolitis and vascular congestion.

Pathological changes were also ameliorated with zanamivir and/

or celecoxib treatment (Fig. 7d).

Discussion

The 2013 H7N9 viruses isolated from poultry and human in

China are closely related phylogenetically [1,22], but H7N9 virus

isolated from poultries often lacks important genetic signature for

mammalian adaptation. For example, CK1 did not possess either

the PB2 627K or 701N mutation, which is found in most H7N9

isolates from human [1,3]. In this study, we assessed the virulence

of CK1 using a well-established influenza mouse model [20,23–

25]. We have shown that CK1 could cause lethal infection in mice,

and the MLD50 was ,2 log higher than that of the human H7N9

virus AH1. Mice infected with 106 PFU of CK1 exhibited similar

mortality rate, body weight loss, and pulmonary damage as those

infected with 105 PFU of AH1. Our data suggests that CK1 may

Figure 3. CK1 and AH1 replication profile in mouse lung. A. Representative images of immunohistochemically stained influenza nucleoprotein
(NP) in formalin fixed mouse lung tissue infected with CK1 or AH1 at day 2 p.i. Viral NP protein was labeled brown by 3,39-diaminobenzidine (DAB).
Uninfected mouse lung as negative control (a), amplified image (b); Representative images of CK1(c) and AH1 (d) infected mouse lung stained NP
positive at 40x magnification. Trachea epithelial cells (e and f), bronchiole epithelial and alveolar epithelial cells (g and h) were stained positive for
viral NP protein. (Original magnification 6200). B. Viral load in infected mouse lung homogenates. Mice were infected with 105 of AH1 or 106 PFU of
CK1, at day 1, 2, 4 and 6 p.i., 3–5 mice from each group were sacrificed. The left side of the lung was homogenized in 1 ml of MEM culture medium.
Viral loads were determined by amplification of viral M gene copy numbers by real time RT-PCR (top panel), and infectious viral titre were determined
by TCID50 assay on MDCK cells (bottom panel). **P,0.01; * P,0.05.
doi:10.1371/journal.pone.0107966.g003

Avian H7N9 Infection in Mice
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also be virulent in humans without further adaptations. CK1 may

be more virulent in mice than other poultry H7N9 virus isolates

tested in other studies. Zhang et al compared the virulence of three

poultry isolates of 2013 H7N9 virus (A/chicken/Shanghai/

S1053/2013, A/pigeon/Shanghai/S1069/2013 and A/pigeon/

Shanghai/S1421/2013) with AH1 [18]. Mice inoculated with $

104 50% egg infectious dose of AH1 had significant weight loss;

while mice inoculated with the chicken or pigeon H7N9 isolates

did not have any weight loss. Similarly, Belser et al inoculated mice

with A/shoveler/Egypt/00215-NAMRU3/07 at a dose .100

times higher than the MLD50 for AH1, but no mice died [17].

Watanabe et al found that the MLD50 was about 3 logs higher for

A/duck/Gunma/466/2011 (H7N9) than that of AH1 [14]. When

compared to three poultry isolates with low virulence in mice,

there are several unique substitutions found in CK1 in the

haemagglutinin, neuraminidase and NS1 protein (table S1). For

instance, CK1 HA gene contains avian type 217Q (226 in H3

numbering) rather than the 217L that is found among the majority

of H7N9 human and avian isolates. This may favour the infection

in mouse respiratory tract which predominantly expresses a-2,3

linked sialic acids receptors. Future studies comparing CK1 with

the other poultry H7N9 viruses with low virulence in mice may

help us to understand specific mutations that contribute to high

virulence in mammals.

Immunohistochemical staining with anti-NP antibody showed

that, similar to AH1, CK1 infected the middle and lower

respiratory tract. A similar phenomenon was seen in H5N1

viruses originating from Hong Kong, in which both avian and

human viruses led to similar extent of infection in the respiratory

tract of mice [26]. On the other hand, the pulmonary viral loads

were higher in the AH1 group than the CK1 group even

inoculation dose of CK1 was 10-time higher than AH1, suggesting

that AH1 replicates better in the mammalian respiratory tract

than CK1. One possibility is that CK1 can induce a higher level of

IFN-b than AH1, which may suppress the viral replication better.

Another possibility is that CK1 lacks the PB2 E627K substitution

which is associated with more efficient replication at a lower body

temperature, a characteristic of mammalian adaptation when

compared with the situation in avian species [1,27,28]. This

finding is also similar to that of H5N1 virus, in which strains with

PB2 627K can replicate to a higher titre in mice lungs than strains

with PB2 627E [29,30].

Cytokine dysregulation is a feature of severe influenza in

humans and animal models. Patients with severe H5N1 and 2009

pandemic H1N1 had very high levels of IL-6 [31,32]. Our

previous study comparing the wild type 2009 pandemic H1N1 and

its more virulent mutant with D225G substitution in the

haemagglutinin showed that the levels of IL-6 and IL-1b were

higher in mice infected with mutant virus than those with wild type

virus [24]. CK1 had a significantly lower level of pulmonary viral

load when compared to AH1-infected mice, but CK1 induced a

more pronounced proinflammatory cytokine/chemokine re-

sponse. One exception is that CK1 had a lower IL-10 level than

that of AH1 on day 6 p.i. In another study comparing different

2009 pandemic H1N1 isolates in mice, more virulent viral isolates

induced higher levels of IL-6, but lower levels of IL-10 [33]. As the

viral load was lower in the CK1 group, the difference in cytokine/

chemokine cannot be explained by the difference in the initial viral

Figure 4. Liver, kidney and heart tissue degenerative changes in CK1-infected mice at day 6 post infection. Representative images of
haematoxylin and eosin (H&E) stained tissue sections are presented. The liver (a), kidney (d), heart (g) of uninfected mice were shown for comparison.
CK1-infected mice at day 6 p.i. showed liver hepatocytes degeneration, focal cells necrosis (arrows, b) and hemorrhagic changes (c); kidney tubular
epithelial cells degenerative changes (arrows, e) and peritubular vessels congestion (f). Mild myocardial cell swelling (arrows, h) and red blood cells
infiltrating between degenerative myocardial fibers (i) were seen in the heart. Original magnification 6200.
doi:10.1371/journal.pone.0107966.g004

Avian H7N9 Infection in Mice

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107966



inoculation dose. In human, more severe cytokine dysregulation

has been demonstrated in fatal than non-fatal cases of influenza

virus infection [1,31]. NS1 has been shown to be important in the

induction of host inflammatory response [34]. NS1 may affect the

innate immune response through the interaction between RIG-I

[35] and host proteins containing the PDZ domain [36]. There is

one amino acid difference in the NS1 proteins of AH1 and CK1 at

amino acid position 3 (serine in AH1 and phenylalanine in CK1),

but the significance of this difference remains to be determined.

The type of histopathological changes induced by CK1 was

similar to that of AH1. Extrapulmonary involvement in infected

mice was limited to histopathological changes without virological

evidence of direct infection which is consistent with AH1 infection

in ferrets [37]. The degenerative changes in the heart, liver and

kidney during the later stage of infection may be related to the

hypoxic and immune-related damage triggered by the cytokine

dysregulation as seen in severe influenza [1,24,31,32]. In ferrets,

AH1 could cause hepatic lipidosis [37]. The lack of extrapulmo-

nary viral dissemination is compatible with our recent clinical

study showing lack of viremia and absence of viruses in tissues

from patients [5]. This is in contrast to H5N1 infection, in which

extrapulmonary spread is commonly seen in mouse models [38].

One major characteristic of H5N1 virus is the presence of

multibasic amino acid at the cleavage site of HA, which renders it

susceptible to cleavage by a wide range of tissue proteases [7],

whereas H7N9 virus with only one arginine at this cleavage site

may have limited its tropism to the respiratory tissues [1,2]. The

lack of extrapulmonary spread in our mouse model is similar to

another mouse model using SH2 [19], but different from the ferret

model, in which SH2 was detected outside the respiratory tract,

including the central nervous system[39]. However, the difference

in virus strain and animal host makes a direct comparison difficult.

In another study, AH1 caused disseminated infection in mouse,

but the infectious dose (106-8 TCID50) was higher than that in our

study [16].

Figure 5. Cytokines and COX-2 expression in infected mice lung and mouse lung epithelial cell line LA-4. (A) The protein levels of
cytokines IL-1b, IL-6, RANTES and IL-10 presented in mouse lung homogenates were determined by ELISA. On day 1, 2, 4 and 6 p.i., the left lungs from
infected mice (3–5 mice from each group) were homogenized in 1 ml of MEM medium. Clarified homogenates were used for cytokine detection.
Non-infected mouse lung specimens were used as baseline controls. (B) mRNA level of IFN-a, IFN-b, IFN-c and COX-2 genes in mouse lung were
determined by real time RT-PCR. Mouse b-actin mRNA was used for RNA concentration normalization. Error bar indicates 6SD. * P,0.05. C. viral load,
IL-6 and COX-2 mRNA levels in CK1- and AH1-infected mouse lung epithelial cell line LA-4 determined by real time RT-PCR. 26105 cells/per well in 12-
well plate were infected with AH1 or CK1 at M.O.I of 2. At indicated times post virus infection, the cells were harvested for RNA extraction and real
time RT-PCR detection of viral M gene (top panel) and IL-6 (middle panel) and COX-2 (bottom panel) mRNA. b-actin was used as RNA concentration
normalization, and the data presented are the average of two experiments. * P,0.05.
doi:10.1371/journal.pone.0107966.g005
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Figure 6. Survivals and body weight changes of mice treated with combination of zanamivir and celecoxib, zanamivir or celecoxib
alone by intraperitoneal injection. The mice were infected with 106 PFU of CK1 and treated with (1) combination treatment (¤): celecoxib 2 mg
daily from day 2 to day 4 p.i., and zanamivir 2mg twice daily from day 2 to day 8 p.i; (2) zanamivir alone (D): zanamivir 2mg twice daily from day 2 to
day 8 p.i; (3) celecoxib alone (.): celecoxib 2 mg daily from day 2 to day 4 p.i., (4) control group (6): Celecoxib solven (1% DMSO/PBS) 200ul from day
2 to day 4 p.i. The survival (a) and body weight change (b) were observed for 14 days after infection. Data shown are the average of two experiments
(in total, n = 10 for each treatment group, n = 17 for control group). *P,0.05 as compared to untreated control group.
doi:10.1371/journal.pone.0107966.g006

Figure 7. Changes of cytokines and viral loads in the lungs of CK1-infected mice after treatments. At day 4 p.i., mice from different
treatment groups were sacrificed. Left-side lungs were homogenized and the clarified homogenate were used for IL-6, IL-1b and RANTES
determination by EIA (a) and the viral loads were determined by real time quantitative RT-PCR (b). n = 5 for each group. Error bar indicates 6SD. (c)
Representative histological images of H&E stained lung tissues of untreated mice (top left panel), treated with celecoxib-zanamivir combination (top
right panel), zanamivir alone (bottom left panel), and celecoxib alone (bottom right panel). Original magnification 6100. (d) Average histology score
of mouse lung tissues with different treatment.
doi:10.1371/journal.pone.0107966.g007
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Celecoxib, a COX-2 inhibitor, reduced pulmonary inflamma-

tion and improved survival in this study when combined with

zanamivir despite their delayed administration at 48 hr p.i. which

is similar to a previous study of H5N1 infection [20]. The

beneficial effect of the addition of celecoxib may also be related to

the suppression of viral replication [40]. However, the cytokine/

chemokine profile and viral loads were similar to zanamivir alone,

celecoxib alone, or even the untreated control group at day 4 p.i.

Our results are similar to that of another study using oseltamivir in

the treatment of H7N9 infection in mice [15]. The lack of

reduction in the pulmonary viral loads suggests that our treatment

regimens had little antiviral effect in the lungs during the early

period of infection. This indicated other mechanisms may be

involved in the improvement of the survival of CK1-infected mice.

Currently, there are no human studies on the use of celecoxib

despite its frequent clinical use for many years as an anti-

inflammatory medication. As the mortality remains high despite

the use of neuraminidase inhibitor in H7N9 infections and that

some strains of H7N9 viruses are resistant to neuraminidase

inhibitors [1,2,14], celecoxib-zanamivir combination should be

further investigated in randomized clinical trials for treating severe

influenza.

In this study, we have used zanamivir instead of oseltamivir in

the treatment experiments for several reasons. Firstly, zanamivir

has low IC50 against H7N9 virus, even for those with R294K

mutations which confer resistance to oseltamivir [9,14]. Secondly

zanamivir can be given intravenously in humans, while oseltamivir

can only be given via the oral route or through nasogastric tubes

which may not be feasible in some patients with severe H7N9

infection. Furthermore, intravenous route is not affected by

absorption in the gastrointestinal tract. Intravenous zanamivir

also results in a very high systemic drug concentration. After one

single dose of 600 mg intravenous zanamivir, the Cmax is above

30 mg/ml, which is much higher than the IC50 of H7N9 virus,

even for strains with R294K mutations [41]. Intravenous

zanamivir has been used in H7N9 patients with favourable

outcome [11]. We used the intraperitioneal route in mice to mimic

the intravenous route in humans.

There are several limitations to our study. Firstly only one

chicken isolate of H7N9 was studied. Further studies should be

performed for more poultry viral isolates with and without

epidemiological link to human cases. Secondly, although the

mouse model is a well-established mammalian model for

influenza, important differences exist between mice and humans

which may affect clinical relevance.

Conclusion
We have demonstrated that chicken H7N9 virus can cause

lethal disease in mice, which was associated with severe pulmonary

and extrapulmonary pathologies, and cytokine dysregulation.

Although the chicken H7N9 isolate had a lower viral replication

in the lung, it has triggered a more intense proinflammatory

cytokine/chemokine response. Celecoxib and zanamivir appear to

ameliorate pulmonary inflammation and improve survival.

Materials and Methods

Viral isolates and animals
The H7N9 virus CK1, isolated from a chicken, and AH1,

isolated from a fatal human case, were used in this study [1,2]. The

viruses were propagated in 10-day-old specific-pathogen-free (SPF)

chicken embryos at 37uC for 48 hours as described previously

without serial passage. Allantoic fluid was titrated in MDCK cells

for the determination of TCID50 and PFU as described previously

[42]. Aliquots of virus stock were stored at 280uC until use. HA,

NA, PB2 and NS genes of the CK1 stock were sequenced and

found no additional mutations other than the sequence data

deposited in the GeneBank. Female BALB/c mice at 6–8 weeks

old were obtained from the Laboratory Animal Unit, the

University of Hong Kong. The animals were housed in SPF-free

facilities with 12-hour light-dark cycles and standard pellet feed

and water ad libitum. Virus challenge experiments were carried

out in biosafety level 3 animal facilities. All animal-related

experiments were performed according to the standard operating

procedures as previously described [20] and were approved by the

University of Hong Kong committee on the use of live Animals in

teaching and research.

Table 2. Mouse lung tissue histological score.

Histological
changes

Airway and alveolar
cells necrosis (necrosis)

Cell infiltration and alveolar
hyaline membrane
formation (infiltration)

Alveolar hemorrhage
(hemorrhage)

Score 0 Normal lung Normal lung Normal lung

Score 1 Airway epithelial cell
necrosis limited in one
lung lobe

Infiltration cells only on
vessel wall or peribronchiolar
in one lobe

Hemorrhage restricted
in one small area (one 20x field)

Score 2 Airway epithelial cell
necrosis in more than one lung
lobes, with cell debris congested
in airway lumens

Few cells (1–5 cells) in air
space but in focal area
of one lobe

Hemorrhage in one larger area
(more than one 20x field)
in one lobe

Score 3 Airway epithelial cell necrosis
in more than one lung lobes;
small area of alveolar wall
collapse

More cells in air space in more
than one lobe; and alveolar space
hyaline membrane formation in
focal area

Hemorrhage in more than one
lung lobes, with focal area of
alveolar space congested with RBC

Score 4 Airway epithelial cell necrosis
in more than one lung lobes
alveolar wall collapse in more
than one lobes

Severe infiltration with air
space congested; large area
of hyaline formation in more
that one lobes

All 4 lobes showed focal
or diffuse hemorrhage

doi:10.1371/journal.pone.0107966.t002
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Virus inoculation and drug treatment
For the determination of MLD50, groups of six BALB/c mice

were inoculated with 50 mL 10-fold dilutions of CK1 or AH1 via

intranasal route under ketamine (100 mg/kg given intraperitone-

ally) and xylazine (10 mg/kg given intraperitoneally) anaesthesia.

Mortality was observed for 14 days. MLD50 titres were calculated

by the method of Reed and Muench. For pathogenesis study,

groups of BALB/c mice were inoculated via intranasal route with

106 PFU of CK1 or 105 PFU of AH1 under ketamine (100 mg/kg)

and xylazine (10 mg/kg) anaesthesia. The body weights, symp-

toms, and survivals of the mice were monitored daily for 14 days

after virus inoculation. Disease severity was scored (Table S2). As a

humane endpoint, the animals were euthanized by intraperitoneal

injection of pentobarbital sodium (100mg/kg) when the disease

score was 4, or when the disease score was 3 with a weight loss

exceeding 30%. For sample collection on 1, 2, 4 and 6 days p.i.,

three to five mice from each group were sacrificed to collect their

blood, brain, heart, liver, kidneys and lungs. The collected organs

were separated into two sets, one set being frozen at 280uC for

RNA and protein extraction, and the other set being fixed in 10%

neutral formalin for histopathological study. Drug treatment was

modified from our previous study for H5N1 [20]. Celecoxib

(Sigma-Aldrich, St. Louis, MO, USA) was dissolved in 10%

dimethyl sulfoxide at 100 mg/ml; and zanamivir (GlaxoSmith-

Kline Australia Pty LTD, Boronia, Australia) was dissolved in

phosphate buffered saline (PBS) at 10 mg/ml. Mice were

inoculated with 106 PFU of CK1. Ten mice in each treatment

group and 17 in control group were observed for 14 days to

monitor survival. An additional five mice in each treatment group

and 3 mice in control group were sacrificed on day 4 p.i. for

pathological study. The celecoxib-zanamivir combination group

was treated with intraperitoneal injection of celecoxib at 2 mg/day

from day 2 to day 4 p.i. and intraperitoneal injection of zanamivir

2 mg twice daily from day 2 to day 8 p.i. The zanamivir alone

group was treated with zanamivir twice daily from day 2 to day 8

p.i. Celecoxib alone group was treated with celecoxib at 2 mg/day

from day 2 to day 4 p.i. Untreated control group received same

volume of solvents for celecoxib.

Determination of viral load in homogenized specimens
The left lungs, left hemispheres of the brain, left kidneys, and

0.2 g of liver were homogenized separately in 1 ml of cold

minimum essential medium (MEM) supplemented with 1%

penicillin and streptomycin. Clarified samples of homogenate

supernatant were stored in aliquots at 280uC until use. For

quantitative real-time RT-PCR detection of viral gene expression,

total RNA were extracted from 350 ml of clarified tissue

homogenates using Qiagen RNeasy Mini kit (Qiagen, German-

town, MD, USA) as we described previously [20,23]. Reverse

transcription was performed using Superscript RT II enzyme (Life

Technology, CA, USA) using influenza specific UNI12 primer (59-

AGCAAAAGCAGG-39). The cDNA was amplified by real-time

PCR performed on LightCycler 480 system (Roche Applied

Sciences) using SYBR Green I Master (Roche). Influenza A M

gene was used as the target gene with forward primer 59-

CTTCTAACCGAGGTCGAAACG-39 and reverse primer 59-

GGCATTTTGGACAAAKCGTCTA-39. The pcDNA3.1 plas-

mid containing the cloned M gene fragment was applied as

standard. The detection limit of this assay was 100 copies of the

viral M gene per ml of tissue homogenates. Viral titres were also

determined by TCID50 assay as we described previously [42].

Determination of interferons and cytokines in
homogenized lung specimens

The pulmonary expression levels of IFN-a, IFN-b, IFN-c, and

COX-2 mRNA were determined by real-time RT-PCR using

oligodT transcribed-cDNA from lung tissue homogenates. The

expression of b-actin was quantified by real-time RT-PCR and

used for RNA normalization, and a DDCt method was used to

estimate the differential gene expression between samples. Primers

for real-time PCR: IFN-a forward primer: 59-ARSYTGTST-

GATGCARCAGGT-39, IFN-a reverse primer: 59-GGWACA-

CAGTGATCCTGTGG; IFN-b-forward primer: 59-AGCTC-

CAAGAAAGGACGAACAT-39, IFN-b-reverse primer, 59-

GCCCTGTAGGTGAGGTTGATCT-39; IFN-c-forward prim-

er: 59-ARSYTGTSTGATGCARCAGGT-39, IFN-c-reverse

primer: 59-GGWACACAGTGATCCTGTGG-39; Mouse b-ac-

tin-forward primer: 59-TCACCCACACTGTGCCCATC-

TACGA-39, Mouse b-actin-reverse primer: 59-GGATGCCA-

CAGGATTCCATACCCA-39; COX-2 forward primer: 59-

TCTGGAACATTGTGAACAACATC-39, reverse primer: 59-

AAGCTCCTTATTTCCCTTCACAC-39.

Protein levels of IL-1b, IL-6, IL-10, and RANTES in clarified

lung homogenates were determined by enzyme immunoassay

(R&D system, Inc., Minneapolis, MN, USA) as described

previously [23]. The detection limits of these assays were 7.8

pg/ml for IL-1b, IL-6 and RANTES, and 16 pg/ml for IL-10.

Histopathological and immunohistochemical staining of
influenza nucleoprotein in lung tissue

To examine pathological changes of infected mouse lung at

different time after infection, right side of the lung were fixed in 10%

formalin. All 4 lung lobes were embedded in paraffin and sectioned

at 5mm for haematoxylin and eosin (H&E) staining. All lung fields of

the 4 lobes were examined at 20x magnification for each sample.

The severity of histological changes was graded according to a

semiquantitative scoring system (Table 2) [17,43,44].

For influenza NP staining, de-paraffinized and rehydrated tissue

sections were treated with Antigen Unmasking Solution according

the manufacturer’s instructions (Vector Laboratories Inc. Burlin-

game, CA, USA) to unmask the antigens. After blocking with 1%

bovine serum albumin, the sections were incubated with mouse

anti-influenza NP-antibody (HB65, ATCC) at 4uC overnight,

followed by biotin-conjugated goat anti-mouse IgG (Calbiochem,

Darmstadt, Germany) for 30 min at room temperature. Strepta-

vidin/peroxidase complex reagent (Vector Laboratories, Burlin-

game, CA) was then added and incubated at room temperature for

30 min. Colour development was performed with 3, 39-diamino-

benzidine (DAB, Vector Laboratories, Burlingame, CA, USA) and

images were captured with Nikon80i imaging system with the help

of Spot-advance computer software.

In vitro infection of mouse lung epithelial cells and
detection of viral load, IL-6 and COX-2 mRNA level by
quantitative real time RT-PCR

Mouse lung epithelial cell line LA-4 (ATCC # CCL-196) was

seeded in 12-well plates at 26105 cells per well and incubated

overnight at 37uC with 5% CO2. The cells were incubated with

CK1 or AH1 at a multiplicity of infection of 2 for 1 h at 37uC.

The cells were washed twice with PBS after removing the

virus,and further incubated for 1, 3, 6, and 9 hours. At each time

point after infection, the cells were harvested. Total RNA

extraction, cDNA transcription and real-time RT-PCR determi-

nation of viral M gene copies, IL-6 and COX-2 mRNA level were

performed as described above.
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Statistical analysis
Mouse survival rates were analyzed by the Kaplan-Meier

method and Log-rank test using SPSS 17.0 for Windows (SPSS

Inc., Chicago, IL). Pulmonary viral loads, cytokine, chemokine

profiles, and histology scores were analyzed by Student’s t-test. A

P value of ,0.05 was considered statistically significant.
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