3,743 research outputs found

    Atomic entanglement sudden death in a strongly driven cavity QED system

    Full text link
    We study the entanglement dynamics of strongly driven atoms off-resonantly coupled with cavity fields. We consider conditions characterized not only by the atom-field coupling but also by the atom-field detuning. By studying two different models within the framework of cavity QED, we show that the so-called atomic entanglement sudden death (ESD) always occurs if the atom-field coupling lager than the atom-field detuning, and is independent of the type of initial atomic state

    Electronic nematic correlations in the stress free tetragonal state of BaFe2x_{2-x}Nix_{x}As2_{2}

    Full text link
    We use transport and neutron scattering to study electronic, structural, and magnetic properties of the electron-doped BaFe2x_{2-x}Nix_xAs2_2 iron pnictides in the external stress free detwinned state. Using a specially designed in-situ mechanical detwinning device, we demonstrate that the in-plane resistivity anisotropy observed in the uniaxial strained tetragonal state of BaFe2x_{2-x}Nix_xAs2_2 below a temperature TT^\ast, previously identified as a signature of the electronic nematic phase, is also present in the stress free tetragonal phase below TT^{\ast\ast} (<T<T^\ast). By carrying out neutron scattering measurements on BaFe2_2As2_2 and BaFe1.97_{1.97}Ni0.03_{0.03}As2_2, we argue that the resistivity anisotropy in the stress free tetragonal state of iron pnictides arises from the magnetoelastic coupling associated with antiferromagnetic order. These results thus indicate that the local lattice distortion and nematic spin correlations are responsible for the resistivity anisotropy in the tetragonal state of iron pnictides.Comment: 5 pages, 4 figure

    Cavitation bubble dynamics inside a droplet suspended in a different host fluid

    Full text link
    In this paper, we present a theoretical, experimental, and numerical study of the dynamics of cavitation bubbles inside a droplet suspended in another host fluid. On the theoretical side, we provided a modified Rayleigh collapse time and natural frequency for spherical bubbles in our particular context, characterized by the density ratio between the two liquids and the bubble-to-droplet size ratio. Regarding the experimental aspect, experiments were carried out for laser-induced cavitation bubbles inside oil-in-water (O/W) or water-in-oil (W/O) droplets. Two distinct fluid-mixing mechanisms were unveiled in the two systems, respectively. In the case of O/W droplets, a liquid jet emerges around the end of the bubble collapse phase, effectively penetrating the droplet interface. We offer a detailed analysis of the criteria governing jet penetration, involving the standoff parameter and impact velocity of the bubble jet on the droplet surface. Conversely, in the scenario involving W/O droplets, the bubble traverses the droplet interior, inducing global motion and eventually leading to droplet pinch-off when the local Weber number exceeds a critical value. This phenomenon is elucidated through the equilibrium between interfacial and kinetic energies. Lastly, our boundary integral model faithfully reproduces the essential physics of nonspherical bubble dynamics observed in the experiments. We conduct a parametric study spanning a wide parameter space to investigate bubble-droplet interactions. The insights from this study could serve as a valuable reference for practical applications in the field of ultrasonic emulsification, pharmacy, etc.Comment: 31 pages,17 figures,Accepted by Journal of Fluid Mechanic

    Experimental and numerical investigation of the dynamics of a coalesced oscillating bubble near a free surface

    Get PDF
    Understanding the dynamics of oscillating bubbles beneath a free surface is crucial to many practical applications including airgun-bubble clusters, underwater explosions, etc. In this paper, an experimental and numerical study of the dynamic behaviors of a coalesced bubble near a free surface is conducted, which shows quite different physical features from single bubble dynamics. Firstly, two similar sized underwater discharge bubbles are generated simultaneously beneath a free surface and their complex interactions are experimentally studied with high-speed photography imaging. A strong interaction between two bubbles and the subsequent coalescence are observed when the initial distance between two bubbles is smaller than the maximum equivalent bubble radius. Secondly, both axisymmetric and three-dimensional (3D) boundary integral models are used to simulate the pre-coalescence and post-coalescence of two bubbles. The results obtained by the two models agree well in axisymmetric conditions. The essential physical phenomena in representative experiments are well reproduced by the present 3D model. The pressure field is calculated by the auxiliary function method, which helps to reveal the underlying mechanisms of bubble collapse patterns and jetting behaviors. A parametric study reveals the dependence of the coalesced bubble dynamics and free surface motion on the governing dimensionless quantities

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    Quantum secure communication scheme with W state

    Full text link
    Recently, Cao et al. proposed a new quantum secure direct communication scheme using W state. In their scheme, the error rate introduced by an eavesdropper who takes intercept-resend attack, is only 8.3%. Actually, their scheme is just a quantum key distribution scheme because the communication parties first create a shared key and then encrypt the secret message using one-time pad. We then present a quantum secure communication scheme using three-qubit W state. In our scheme, the error rate is raised to 25% and it is not necessary for the present scheme to use alternative measurement or Bell basis measurement. We also show our scheme is unconditionally secure.Comment: Comments are welcom

    Axisymmetric column collapses of bi-frictional granular mixtures

    Full text link
    The behavior of granular column collapses is associated with the dynamics of geohazards, such as debris flows, landslides, and pyroclastic flows, yet its underlying physics is still not well understood. In this paper, we explore granular column collapses using the spheropolyhedral discrete element method (DEM), where the system contains two types of particles with different frictional properties. We impose three different mixing ratios and multiple different particle frictional coefficients, which lead to different run-out distances and deposition heights. Based on our previous work and a simple mixture theory, we propose a new effective initial aspect ratio for the bi-frictional granular mixture, which helps unify the description of the relative run-out distances. We analyze the kinematics of bi-frictional granular column collapses and find that deviations from classical power-law scaling in both the dimensionless terminal time and the dimensionless time when the system reaches the maximum kinetic energy may result from differences in the initial solid fraction and initial structures. To clarify the influence of initial states, we further decrease the initial solid fraction of granular column collapses, and propose a trial function to quantitatively describe its influence. Due to the utilization of a simple mixture theory of contact occurrence probability, this study can be associated with the friction-dependent rheology of granular systems and friction-induced granular segregations, and further generalized into applications with multiple species of particles in various natural and engineering mixtures

    Quantum broadcast communication

    Get PDF
    Broadcast encryption allows the sender to securely distribute his/her secret to a dynamically changing group of users over a broadcast channel. In this paper, we just consider a simple broadcast communication task in quantum scenario, which the central party broadcasts his secret to multi-receiver via quantum channel. We present three quantum broadcast communication schemes. The first scheme utilizes entanglement swapping and Greenberger-Horne-Zeilinger state to realize a task that the central party broadcasts his secret to a group of receivers who share a group key with him. In the second scheme, based on dense coding, the central party broadcasts the secret to multi-receiver who share each of their authentication key with him. The third scheme is a quantum broadcast communication scheme with quantum encryption, which the central party can broadcast the secret to any subset of the legal receivers

    Multiparty simultaneous quantum identity authentication based on entanglement swapping

    Get PDF
    We present a multiparty simultaneous quantum identity authentication protocol based on entanglement swapping. In our protocol, the multi-user can be authenticated by a trusted third party simultaneously

    A unified theory for bubble dynamics

    Full text link
    In this work, we established a novel theory for the dynamics of oscillating bubbles such as cavitation bubbles, underwater explosion bubbles, and air bubbles. For the first time, we proposed bubble dynamics equations that can simultaneously take into consideration the effects of boundaries, bubble interaction, ambient flow field, gravity, bubble migration, fluid compressibility, viscosity, and surface tension while maintaining a unified and elegant mathematical form. The present theory unifies different classical bubble equations such as the Rayleigh-Plesset equation, the Gilmore equation, and the Keller-Miksis equation. Furthermore, we validated the theory with experimental data of bubbles with a variety in scales, sources, boundaries, and ambient conditions and showed the advantages of our theory over the classical theoretical models, followed by a discussion on the applicability of the present theory based on a comparison to simulation results with different numerical methods. Finally, as a demonstration of the potential of our theory, we modeled the complex multi-cycle bubble interaction with wide ranges of energy and phase differences and gained new physical insights into inter-bubble energy transfer and coupling of bubble-induced pressure waves
    corecore