119 research outputs found
Convective Transport Characteristics of Nanofluids in Light- Weight Metal Foams with High Porosity
Metal foams can be well used as ideal materials for various efficient heat transfer devices due to light weight, high specific, and high thermal conductivity. Nanofluids have higher thermal conductivities than traditional fluid, so it can be used as an efficient heat transfer characteristics medium. This paper focuses on heat transfer of nanofluid, metal foam and the combination of the two. The physical properties of nanofluid and metal foam are summarized. The characteristics of flow and heat transfer are introduced. This work creates a close connection between scientific research and practical applications of this dual heat transfer enhancement method
Efficient surface water flow simulation on static Cartesian grid with local refinement according to key topographic features
Aiming at improving the computational efficiency without accuracy losses for surface water flow simulation, this paper presents a structured but non-uniform grid system incorporated into a Godunov-type finite volume scheme. The proposed grid system can detect the key topographic features in the computational domain where high-resolution mesh is in need for reliably solving the shallow water equations. The mesh refinement is automatically carried out in these areas while the mesh in the rest of the domain remains coarse. The criterion determining the refinement is suggested by a dimensionless number with a fixed value of 0.2 after sensitivity analysis. Three laboratory and field-scale test cases are employed to demonstrate the performance of the model for flow simulations on the new non-uniform grids. In all of the tests, the grid system is shown to successfully generate high-resolution mesh only in those areas with abruptly changing topographic features that dominate the flooding processes. To produce numerical solutions of similar accuracy, the non-uniform grid based model is able to accelerate by about two times comparing with the fine uniform grid based counterpart
Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures
© The Royal Society of Chemistry. Solutions of calcium chloride in mixed water and formamide are excellent electrolytes for capacitive charge storage in partially oxidised carbon nanotubes at unprecedented sub-zero-temperatures (e.g. 67% capacitance retention at -60 °C)
- …