6,642 research outputs found
Orthogonal learning particle swarm optimization
Particle swarm optimization (PSO) relies on its
learning strategy to guide its search direction. Traditionally,
each particle utilizes its historical best experience and its neighborhood’s
best experience through linear summation. Such a
learning strategy is easy to use, but is inefficient when searching
in complex problem spaces. Hence, designing learning strategies
that can utilize previous search information (experience) more
efficiently has become one of the most salient and active PSO
research topics. In this paper, we proposes an orthogonal learning
(OL) strategy for PSO to discover more useful information that
lies in the above two experiences via orthogonal experimental
design. We name this PSO as orthogonal learning particle swarm
optimization (OLPSO). The OL strategy can guide particles to
fly in better directions by constructing a much promising and
efficient exemplar. The OL strategy can be applied to PSO with
any topological structure. In this paper, it is applied to both global
and local versions of PSO, yielding the OLPSO-G and OLPSOL
algorithms, respectively. This new learning strategy and the
new algorithms are tested on a set of 16 benchmark functions, and
are compared with other PSO algorithms and some state of the
art evolutionary algorithms. The experimental results illustrate
the effectiveness and efficiency of the proposed learning strategy
and algorithms. The comparisons show that OLPSO significantly
improves the performance of PSO, offering faster global convergence,
higher solution quality, and stronger robustness
On the Three-dimensional Lattice Model
Using the restricted star-triangle relation, it is shown that the -state
spin integrable model on a three-dimensional lattice with spins interacting
round each elementary cube of the lattice proposed by Mangazeev, Sergeev and
Stroganov is a particular case of the Bazhanov-Baxter model.Comment: 8 pages, latex, 4 figure
Atomistic Investigation of Titanium Carbide Ti8C5 under Impact Loading
Titanium carbides attract attention from both academic and industry fields because of their intriguing mechanical properties and proven potential as appealing candidates in the variety of fields such as nanomechanics, nanoelectronics, energy storage and oil/water separation devices. A recent study revealed that the presence of Ti8C5 not only improves the impact strength of composites as coatings, but also possesses significant strengthening performance as an interlayer material in composites by forming strong bonding between different matrices, which sheds light on the design of impact protection composite materials. To further investigate the impact resistance and strengthening mechanism of Ti8C5, a pilot Molecular Dynamics (MD) study utilizing comb3 potential is carried out on a Ti8C5 nanosheet by subjecting it to hypervelocity impacts. The deformation behaviour of Ti8C5 and the related impact resist mechanisms are assessed in this research. At a low impact velocity ~0.5 km/s, the main resonance frequency of Ti8C5 is 11.9 GHz and its low Q factor (111.9) indicates a decent energy damping capability, which would eliminate the received energy in an interfacial reflection process and weaken the shock waves for Ti8C5 strengthened composites. As the impact velocity increases above the threshold of 1.8 km/s, Ti8C5 demonstrates brittle behaviour, which is signified by its insignificant out-of-plane deformation prior to crack initiation. When tracking atomic Von Mises stress distribution, the elastic wave propagation velocity of Ti8C5 is calculated to be 5.34 and 5.90 km/s for X and Y directions, respectively. These figures are inferior compared with graphene and copper, which indicate slower energy delocalization rates and thus less energy dissipation via deformation is expected prior to bond break. However, because of its relatively small mass density comparing with copper, Ti8C5 presents superior specific penetration. This study provides a fundamental understanding of the deformation and penetration mechanisms of titanium carbide nanosheets under impact, which is crucial in order to facilitate emerging impact protection applications for titanium carbide-related composites
Grey Fuzzy Sliding Mode Control with Grey Estimator for Brushless Doubly Fed Motor
In this paper, a grey fuzzy sliding mode controller (GFSMC) for brushless doubly fed motor (BDFM) adjustable speed system is presented. A grey model estimator and adaptive fuzzy control technology are incorporated into the sliding mode control (SMC) to adaptively regulate the adaptive law of SMC. The proposed adaptive fuzzy equivalent controller, adaptive fuzzy switching controller, and grey model compensation controller for BDFM can eliminate the average chattering encountered by most SMC schemes, improve the robustness, and obtain excellent static and dynamic performances of SMC. Simulation results show that the proposed control strategy is feasible, correct and effective
Modeling and simulation of PMSM control system based on SVPWM
The paper introduces the basic principle of space vector pulse width modulation simply and expatiates a method for implementing space vector pulse width modulation in detail based on MATLAB/SIMULINK, designs modeling and simulation of AC servo system with PMSM (Permanent Magnet Synchronous Motor), the simulation results show that the model is effective, and the method provides a base for both software and hardware design of an actual PMSM
Comparative studies on wood structure and microtensile properties between compression and opposite wood fibers of Chinese fir plantation
The microtensile properties of mechanically isolated compression wood (CW) and opposite wood (OW) tracheids of Chinese fir (Cunninghamia lanceolata) were investigated and discussed with respect to their structure. Major differences in the tensile modulus and ultimate tensile stress were found between CW and OW fibers. Compared to OW, CW showed a larger cellulose microfibril angle, less cellulose content and probably more pits, resulting in lower tensile properties. These findings contribute to a further understanding of the structural–mechanical relationships of Chinese fir wood at the cell and cell wall level, and provide a scientific basis for better utilization of plantation softwood
- …