5 research outputs found

    Geomorphology and Late Pleistocene–Holocene Sedimentary Processes of the Eastern Gulf of Finland

    No full text
    In 2017, a detailed study of the Eastern Gulf of Finland (the Baltic Sea) seafloor was performed to identify and map submerged glacial and postglacial geomorphologic features and collect data pertinent to the understanding of sedimentation in postglacial basins. Two key areas within the Gulf were investigate using a multibeam echosounder, SeaBat 8111 and an EdgeTech 3300-HM acoustic sub-bottom profiling system. High-resolution multibeam bathymetric data (3-m resolution) were used to calculate aspect, slope, terrain ruggedness and bathymetric position index using ArcGIS Spatial Analyst and the Benthic Terrain Modeler toolbox. These data and resultant thematic maps revealed, for the first time, such features as streamlined till ridges, end-moraine ridges, and De Geer moraines that are being used for the reconstruction of the deglaciation in the Eastern Gulf of Finland. This deglaciation occurred between 13.8 and 13.3 ka BP (Pandivere–Neva stage) and 12.25 ka BP (Salpausselkä I stage). Interpretations of the seismic-reflection profiles and 3D models showing the surfaces of till, and the identification of the Late Pleistocene sediment and modern bottom relief, indicate deep relative water-level fall in the Early Holocene and, most likely, several water-level fluctuations during this time

    Echoes from the Past: A Healthy Baltic Sea Requires More Effort

    Get PDF
    Integrated sediment multiproxy studies and modeling were used to reconstruct past changes in the Baltic Sea ecosystem. Results of natural changes over the past 6000 years in the Baltic Sea ecosystem suggest that forecasted climate warming might enhance environmental problems of the Baltic Sea. Integrated modeling and sediment proxy studies reveal increased sea surface temperatures and expanded seafloor anoxia (in deep basins) during earlier natural warm climate phases, such as the Medieval Climate Anomaly. Under future IPCC scenarios of global warming, there is likely no improvement of bottom water conditions in the Baltic Sea. Thus, the measures already designed to produce a healthier Baltic Sea are insufficient in the long term. The interactions between climate change and anthropogenic impacts on the Baltic Sea should be considered in management, implementation of policy strategies in the Baltic Sea environmental issues, and adaptation to future climate change

    Picking Up the PiecesHarmonising and Collating Seabed Substrate Data for European Maritime Areas

    No full text
    The poor access to data on the marine environment is a handicap to government decision-making, a barrier to scientific understanding and an obstacle to economic growth. In this light, the European Commission initiated the European Marine Observation and Data Network (EMODnet) in 2009 to assemble and disseminate hitherto dispersed marine data. In the ten years since then, EMODnet has become a key producer of publicly available, harmonised datasets covering broad areas. This paper describes the methodologies applied in EMODnet Geology project to produce fully populated GIS layers of seabed substrate distribution for the European marine areas. We describe steps involved in translating national seabed substrate data, conforming to various standards, into a uniform EMODnet substrate classification scheme (i.e., the Folk sediment classification). Rock and boulders form an additional substrate class. Seabed substrate data products at scales of 1:250,000 and 1:1 million, compiled using descriptions and analyses of seabed samples as well as interpreted acoustic images, cover about 20% and 65% of the European maritime areas, respectively. A simple confidence assessment, based on sample and acoustic coverage, is helpful in identifying data gaps. The harmonised seabed substrate maps are particularly useful in supraregional, transnational and pan-European marine spatial planning
    corecore