5 research outputs found

    Delayed Pion Spectroscopy of Hypernuclei

    Get PDF
    New possibilities of hypernuclear studies at modern electron accelerators based on recently developed radio frequency photomultiplier tubes are discussed

    Active Oxygen Target for Studies in Nuclear Astrophysics with Laser Compton Backscattered γ-ray Beams

    No full text
    An active target is being developed to be used in low-energy nuclear astrophysics experiments. It is a position- and time-sensitive detector system based on the low-pressure Multi Wire Proportional Chamber (MWPC) technique. Methylal ((OCH3)2CH2), at a pressure of a few Torr, serves as the working gas for MWPC operation, and in addition, the oxygen atoms of the methylal molecules serve as an experimental target. The main advantage of this new target detector system is that it has high sensitivity to the low-energy, highly-ionizing particles produced after photodisintegration of 16O and insensitivity to γ-rays and minimum ionizing particles. This allows users to detect only the products of the nuclear reaction of interest. The threshold energies for detection of α particles and 12C nuclei are about 50 keV and 100 keV, respectively. The main disadvantage of this detector is the small target thickness, which is around a few tens of μg/cm2. However, reasonable luminosity can be achieved by using a multimodule detector system and an intense, Laser Compton Backscattered (LCB) γ-ray beam. This paper summarizes the architecture of the active target and reports test results of the prototype detector. The tests investigated the timing and position resolutions of 30 × 30 mm2 low-pressure MWPC units using an α-particle source. The possibility of measuring the 16O(γ, α)12C cross-section in the 8–10 MeV energy region by using a LCB γ-ray beam is also discussed. A measurement of the 16O(γ, α)12C cross-section will enable the reaction rate of 12C(α, γ)16O to be determined with significantly improved precision compared to previous experiments

    Advanced Radio Frequency Timing AppaRATus (ARARAT) Technique and Applications

    No full text
    The development of the advanced Radio Frequency Timer of electrons is described. It is based on a helical deflector, which performs circular or elliptical sweeps of keV electrons, by means of 500 MHz radio frequency field. By converting a time distribution of incident electrons to a hit position distribution on a circle or ellipse, this device achieves extremely precise timing. Streak Cameras, based on similar principles, routinely operate in the ps and sub-ps time domain, but have substantial slow readout system. Here, we report a device, where the position sensor, consisting of microchannel plates and a delay-line anode, produces ~ns duration pulses which can be processed by using regular fast electronics. A photon sensor based on this technique, the Radio Frequency Photo-Multiplier Tube (RFPMT), has demonstrated a timing resolution of ~10 ps and a time stability of ~0.5 ps, FWHM. This makes the apparatus highly suited for Time Correlated Single Photon Counting which is widely used in optical microscopy and tomography of biological samples. The first application in lifetime measurements of quantum states of graphene, under construction at the A. I. Alikhanyan National Science Laboratory (AANL), is outlined. This is followed by a description of potential RFPMT applications in time-correlated Diffuse Optical Tomography, time-correlated Stimulated Emission Depletion microscopy, hybrid FRET/STED nanoscopy and Time-of-Flight Positron Emission Tomography

    Physics with Positron Beams at Jefferson Lab 12 GeV

    No full text
    Positron beams, both polarized and unpolarized, are identified as essential ingredients for the experimental program at the next generation of lepton accelerators. In the context of the Hadronic Physics program at the Jefferson Laboratory (JLab), positron beams are complementary, even essential, tools for a precise understanding of the electromagnetic structure of the nucleon, in both the elastic and the deep-inelastic regimes. For instance, elastic scattering of (un)polarized electrons and positrons off the nucleon allows for a model independent determination of the electromagnetic form factors of the nucleon. Also, the deeply virtual Compton scattering of (un)polarized electrons and positrons allows us to separate unambiguously the different contributions to the cross section of the lepto-production of photons, enabling an accurate determination of the nucleon Generalized Parton Distributions (GPDs), and providing an access to its Gravitational Form Factors. Furthermore, positron beams offer the possibility of alternative tests of the Standard Model through the search of a dark photon or the precise measurement of electroweak couplings. This letter proposes to develop an experimental positron program at JLab to perform unique high impact measurements with respect to the two-photon exchange problem, the determination of the proton and the neutron GPDs, and the search for the AA^{\prime} dark photon
    corecore