2,027 research outputs found

    Coherent lepton pair production in hadronic heavy ion collisions

    Full text link
    Recently, significant enhancements of e+ee^{+} e^{-} pair production at very low transverse momentum (pT<0.15p_{T} < 0.15 GeV/c) were observed by the STAR collaboration in peripheral hadronic A+A collisions. This excesses can not be described by the QGP thermal radiation and ρ\rho in-medium broadening calculations. This is a sign of coherent photon-photon interactions, which were conventionally studied only in ultra-peripheral collisions. In this article, we present calculations of lepton pair (e+ee^{+}e^{-} and μ+μ\mu^{+}\mu^{-}) production from coherent photon-photon interactions in hadronic A+A collisions at RHIC and LHC energies within the STAR and ALICE acceptance

    The NMR of High Temperature Superconductors without Anti-Ferromagnetic Spin Fluctuations

    Full text link
    A microscopic theory for the NMR anomalies of the planar Cu and O sites in superconducting La_1.85Sr_0.15CuO_4 is presented that quantitatively explains the observations without the need to invoke anit-ferromagnetic spin fluctuations on the planar Cu sites and its significant discrepancy with the observed incommensurate neutron spin fluctuations. The theory is derived from the recently published ab-initio band structure calculations that correct LDA computations tendency to overestimate the self-coulomb repulsion for the half-filled Cu d_x2-y2 orbital for these ionic systems. The new band structure leads to two bands at the Fermi level with holes in the Cu d_z2 and apical O p_z orbitals in addition to the standard Cu d_x2-y2 and planar O p_sigma orbitals. This band structure is part of a new theory for the cuprates that explains a broad range of experiments and is based upon the formation of Cooper pairs comprised of a k up spin electron from one band and a -k down spin electron from another band (Interband Pairing Model).Comment: In Press, Journal of Physical Chemistry. See also http://www.firstprinciples.com. Minor changes to references and figure readabilit

    Coherent `ab' and `c' transport theory of high-TcT_{c} cuprates

    Full text link
    We propose a microscopic theory of the `cc'-axis and in-plane transport of copper oxides based on the bipolaron theory and the Boltzmann kinetics. The fundamental relationship between the anisotropy and the spin susceptibility is derived, ρc(T,x)/ρab(T,x)x/Tχs(T,x)\rho_{c}(T,x)/\rho_{ab}(T,x)\sim x/\sqrt{T}\chi_{s}(T,x). The temperature (T)(T) and doping (x)(x) dependence of the in-plane, ρab\rho_{ab} and out-of-plane, ρc\rho_{c} resistivity and the spin susceptibility, χs\chi_{s} are found in a remarkable agreement with the experimental data in underdoped, optimally and overdoped La2xSrxCuO4La_{2-x}Sr_{x}CuO_{4} for the entire temperature regime from TcT_{c} up to 800K800K. The normal state gap is explained and its doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques

    One-loop approximation for the Heisenberg antiferromagnet

    Full text link
    We use the diagram technique for spin operators to calculate Green's functions and observables of the spin-1/2 quantum Heisenberg antiferromagnet on a square lattice. The first corrections to the self-energy and interaction are taken into account in the chain diagrams. The approximation reproduces main results of Takahashi's modified spin-wave theory [Phys. Rev. B 40, 2494 (1989)] and is applicable in a wider temperature range. The energy per spin calculated in this approximation is in good agreement with the Monte Carlo and small-cluster exact-diagonalization calculations in the range 0 <= T < 1.2J where J is the exchange constant. For the static uniform susceptibility the agreement is good for T < 0.6J and becomes somewhat worse for higher temperatures. Nevertheless the approximation is able to reproduce the maximum in the temperature dependence of the susceptibility near T = 0.9J.Comment: 15 pages, 6 ps figure

    Transverse optical plasmons in layered superconductors

    Full text link
    We discuss the possible existance of transverse optical plasma modes in superlattices consisting of Josephson coupled superconducting layers. These modes appear as resonances in the current-current correlation function, as opposed to the usual plasmons which are poles in the density-density channel. We consider both bilayer superlattices, and single layer lattices with a spread of interlayer Josephson couplings. We show that our model is in quantitative agreement with the recent experimental observation by a number of groups of a peak at the Josephson plasma frequency in the optical conductivity of La1.85_{1.85}Sr0.15_{0.15}CuO4_4Comment: Proceedings of LT21, in press, 4 pages, Latex with LTpaper.sty and epsfig.sty, 2 postscript figure

    Incommensurate Charge and Spin Fluctuations in d-wave Superconductors

    Full text link
    We show analytic results for the irreducible charge and spin susceptibilities, χ0(ω,Q)\chi_0 (\omega, {\bf Q}), where Q{\bf Q} is the momentum transfer between the nodes in d-wave superconductors. Using the BCS theory and a circular Fermi surface, we find that the singular behavior of the irreducible charge susceptibility leads to the dynamic incommensurate charge collective modes. The peaks in the charge structure factor occur at a set of wave vectors which form an ellipse around Qπ=(π,π){\bf Q}_{\pi}=(\pi,\pi) and Q0=(0,0){\bf Q}_0=(0,0) in momentum space with momentum dependent spectral weight. It is also found that, due to the non-singular irreducible spin susceptibility, an extremely strong interaction via random phase approximation is required to support the magnetic peaks near Qπ{\bf Q}_{\pi}. Under certain conditions, the peaks in the magnetic structure factor occur near Q=(π,π(1±δ)){\bf Q}=(\pi,\pi (1 \pm \delta)) and (π(1±δ),π)(\pi (1 \pm \delta),\pi).Comment: 5 pages, 3 figure

    Self-Assembly of Supramolecular Triblock Copolymer Complexes

    Get PDF
    Four different poly(tert-butoxystyrene)-b-polystyrene-b-poly(4-vinylpyridine) (PtBOS-b-PS-b-P4VP) linear triblock copolymers, with the P4VP weight fraction varying from 0.08 to 0.39, were synthesized via sequential anionic polymerization. The values of the unknown interaction parameters between styrene and tert-butoxystyrene and between tert-butoxystyrene and 4-vinylpyridine were determined from random copolymer blend miscibility studies and found to satisfy 0.031<χS,tBOS<0.034 and 0.39<χ4VP,tBOS<0.43, the latter being slightly larger than the known 0.30<χS,4VP≤0.35 value range. All triblock copolymers synthesized adopted a P4VP/PS core/shell cylindrical self-assembled morphology. From these four triblock copolymers supramolecular complexes were prepared by hydrogen bonding a stoichiometric amount of pentadecylphenol (PDP) to the P4VP blocks. Three of these complexes formed a triple lamellar ordered state with additional short length scale ordering inside the P4VP(PDP) layers. The self-assembled state of the supramolecular complex based on the triblock copolymer with the largest fraction of P4VP consisted of alternating layers of PtBOS and P4VP(PDP) layers with PS cylinders inside the latter layers. The difference in morphology between the triblock copolymers and the supramolecular complexes is due to two effects: (i) a change in effective composition and, (ii) a reduction in interfacial tension between the PS and P4VP containing domains. The small angle X-ray scattering patterns of the supramolecules systems are very temperature sensitive. A striking feature is the disappearance of the first order scattering peak of the triple lamellar state in certain temperature intervals, while the higher order peaks (including the third order) remain. This is argued to be due to the thermal sensitivity of the hydrogen bonding and thus directly related to the very nature of these systems.

    Incommensurate Magnetic Fluctuations in YBa2Cu3O6.6

    Get PDF
    We use inelastic neutron scattering to demonstrate that at low temperatures, the low frequency magnetic fluctuations in YBa_2Cu_3O_{6.6} (Tc=62.7T_c=62.7 K) are incommensurate, being found at positions displaced by ±δ\pm\delta (0.057±0.0060.057\pm 0.006 r.l.u.) along the [π,π][\pi,\pi] direction from the wave vector (π,π)(\pi,\pi) associated with the antiferromagnetic order of the parent insulator, YBa_2Cu_3O_{6}. The dynamical susceptibility χ(q,ω)\chi''(q,\omega) at the incommensurate positions increases on cooling below TcT_c, accompanied by a suppression of magnetic fluctuations at the commensurate points.Comment: 11 pages, Latex, 4 figure
    corecore