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Incommensurate Magnetic Fluctuations inYBa2Cu3O6.6

Pengcheng Dai,1 H. A. Mook,1 and F. Doǧan2

1Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6393
2Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195

(Received 27 May 1997)

We use inelastic neutron scattering to demonstrate that the low-frequency magnetic fluctuations
in YBa2Cu3O6.6 (Tc ­ 62.7 K) change from commensurate to incommensurate on cooling with the
incommensurability first appearing at temperatures aboveTc. For the energies studied, the susceptibility
at incommensurate positions increases on cooling belowTc, accompanied by a suppression of the spin
fluctuations at the commensurate points. These results suggest that incommensurate spin fluctuations
may be a common feature for all cuprate superconductors. [S0031-9007(98)05428-3]

PACS numbers: 74.72.Bk, 61.12.Ex

One of the most important questions in the study of
high-temperature (Tc) cuprate superconductors is the
nature of the interplay between the antiferromagnetic
(AF) spin fluctuations and superconductivity. Indeed, it
is widely believed that the spin dynamical properties of
the cuprates are responsible for many of their anomalous
transport properties and possibly also the superconductiv-
ity. For this reason, the wave-vectorsqd and energy (v)
dependence of the spin dynamical susceptibilityx 00sq, vd,
which can be probed directly by neutron scattering, has
been intensively investigated over the last several years
[1–10]. What is puzzling, however, is the variation of
the results from one cuprate to another. For the single
layer La22xSrxCuO4 (214) family, spin fluctuations
were found at incommensurate positions from the AF
lattice pointsp , pd [1,2]. For the bilayer YBa2Cu3O72x

[(123)O72x ], the situation is less clear. While Rossat-
Mignod and co-workers detected only spin fluctuations
centered atsp, pd [3,7], Tranquadaet al. [4] found
that theq dependence of the line shape ofx 00sq, vd for
(123)O6.6 is more complex than a simple commensurately
centered Gaussian [4]. However, no firm conclusion
about the commensurability and symmetry ofx 00sq, vd
were reached in these experiments. Thus, it is not clear
whether the incommensurability in spin fluctuations is
specific to the 214 family or an essential property of all
cuprate superconductors. A resolution of this issue is
important because ultimately, a microscopic theory for
high-Tc superconductivity must be able to explain the
common features of all cuprate superconductors.

In this Letter, we present inelastic neutron scatter-
ing data which resolve the commensurability issue in
(123)O6.6. We show that the low-frequency spin fluc-
tuations in this material change from commensurate to
incommensurate on cooling with the incommensurability
first appearing at temperatures aboveTc. For the energies
studied, the susceptibility at incommensurate positions in-
creases on cooling belowTc, accompanied by a suppres-
sion of the spin fluctuations at the commensurate points.
Our results therefore indicate that the incommensurability
may be a common feature for all cuprate superconductors.

The neutron scattering measurements were made at the
High-Flux Isotope Reactor at Oak Ridge National Labo-
ratory using the HB-1 and HB-3 triple-axis spectrome-
ters. The characteristics of our single-crystal sample of
(123)O6.6 (Tc ­ 62.7 K) were described in detail previ-
ously [8]. The major difficulty in studying spin fluctua-
tions in the (123)O72x system is to separate the magnetic
signal from (single and multi) phonon and other spuri-
ous processes. While spurious events such as accidental
Bragg scattering can be identified by checking the desired
inelastic scan in the two-axis mode [4], two approaches
can be used to separate magnetic from phonon scatter-
ing. The first approach is to perform neutron polarization
analysis [11] which, in principle, allows an unambigu-
ous separation of magnetic and nuclear scattering. This
method has been successfully employed to identify the
magnetic origin of resonance peaks for ideally [5] and
underdoped [8,9] (123)O72x . However, this advantage
comes at a considerable cost in intensity which makes the
technique impractical for observing small magnetic sig-
nals. The second approach is to utilize the differences
in the temperature andq dependence of the phonon and
magnetic scattering cross sections. While phonon scatter-
ing gains intensity on warming due to the thermal popula-
tion factor, the magnetic signal usually becomes weaker
because it spreads throughout the energy and momen-
tum space at high temperatures. Thus, in an unpolar-
ized neutron measurement the net intensity gain above the
multiphonon background on cooling at appropriate wave
vectors is likely to be magnetic in origin.

Figure 1(a) depicts the reciprocal space probed in the
experiment witha* (­ 2pya), b* (­ 2pyb) directions
shown in the square lattice notation. The momentum trans-
ferssqx , qy , qzd in units of Å21 are at positionssH, K, Ld ­
sqxay2p , qyby2p , qzcy2pd reciprocal lattice units (rlu).
We first describe measurements made in thesH, H, Ld
zone. Our search for the magnetic fluctuations was done
with the filter integration technique [12]. This technique
is effective for isolating scattering from lower dimen-
sional objects and relies on integrating the energy along
the wave-vector directionf0, 0, Lg perpendicular to the
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FIG. 1. (a) Diagram of reciprocal space probed in the experi-
ment. The dashed arrow indicates the scan direction with the
integrated technique while the solid arrow represents the triple-
axis measurements. (b) Calculated scattered intensityIsq, vd
as a function of energy transfer. (c) Integrated measurements
in which the data at 295 K are subtracted from 200, 150, 100,
65, and 15 K. The data are normalized to the same monitor
count. The solid lines in the 100, 150, and 200 K data are fits
to single Gaussians and linear backgrounds. The solid lines
in the 15 and 65 K data are two Lorentzian-squared peaks on
linear backgrounds which best fit the data.

FIG. 2. Triple-axis scans alongsH , 3H , 1.7d at 24 meV for
(a) 295 K, (b) 70 K, (c) 58 K, and (d) 50 K. Data at 295 K
were collected with HB-1 while other scans were taken using
HB-3. The weak structures in (a) are most likely due to phonon
and/or spurious processes. The horizontal bar shows the
resolution along the scan direction and the vertical resolution
is 0.14 Å21. The positions of incommensurability atH ø 0.48
and 0.53 rlu are indicated by the arrows. Solid lines in (b)–(d)
are two Lorentzian-squared peaks on a linear background. The
increased scattering atH . 0.6 rlu is due to phonons.

scan directionfH, H, 0g. To estimate the energy integra-
tion range of the technique, we note that the scattered inten-
sity for acoustic modulations in (123)O72x is proportional
to the in-plane susceptibilityx 00sqx , qy, vd [4,13]

Isq, vd ~
kf

ki
j fCusqdj2 sin2

µ
1
2

Dzqz

∂
3 fnsvd 1 1gx 00sqx , qy , vd ,

where ki and kf are the initial and final neutron wave
numbers,fCusqd is the Cu21 magnetic form factor,Dz
(­ 3.342 Å) the separation of the CuO2 bilayers,q the
total momentum transfer (jqj2 ­ q2

x 1 q2
y 1 q2

z ), and
fnsvd 1 1g the Bose population factor. The solid line
in Fig. 1(b) shows the calculatedIsq, vd at sp , pd
as a function of energy transfer (alongqz) assuming
x 00sqx , qy , vd ­ Fsqx , qydx 00svd ~ vFsqx , qyd [14]. Al-
though there are two broad peaks in the figure, the ob-
served intensity will mostly stem from fluctuations around
the lower energy one (10 , DE , 30 meV) because of
the decreased resolution volume at large energy transfers.
Since room temperature triple-axis measurements show
no detectable magnetic peaks atsp, pd below ,40 meV
(see Figs. 2 and 3), we have used the integrated scan at
295 K as the background and assumed that the subsequent
net intensity gains above the multiphonon background at
lower temperatures are magnetic in origin. Figure 1(c)
shows the result at different temperatures. At 200 K,
the magnetic fluctuations are broadly peaked atsp , pd.
On cooling to 150 and 100 K, the peak narrows in

FIG. 3. Constant-energy scans alongsH, 3H , 1.7d with energy
transfer of 34 meV at (a) 75 K, and (b) 15 K. Identical scans
at 42 meV at (c) 295 K (≤), 75 K (±), and (d) 15 K (±).
Inset (≤) shows the temperature dependence of the scattering
at s0.5, 1.5, 21.7d for DE ­ 42 meV where the arrow indicates
Tc. The multiphonon background in the 295 K data has been
scaled to the value at 75 K for clarity. The horizontal bars
represent instrumental resolution. Solid lines are Gaussian fits
to the data.
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width and grows in intensity but is still well described
by a single Gaussian centered atsp, pd. At 65 K, the
data show a flattish top similar to previous observations
[4]. Although detailed analysis suggests that the profile
is better described by a pair of peaks (Lorentzian or
Lorentzian-squared line shape) than a single Gaussian,
the most drastic change in the profile comes in the
low-temperature superconducting state. Rather than
previously observed single peak, two peaks at positions
displaced by6d (0.057 6 0.006 rlu) from H ­ 0.5 are
observed, accompanied by a drop in the spin fluctuations
at the commensurate position. The observation of sharp
incommensurate peaks with the filter integration technique
suggests that the incommensurability must be weakly
energy dependent in the integration range.

Although the integration technique is excellent for find-
ing weak peaks from the scattering of lower dimensional
objects, it is important to confirm the result with triple-
axis measurements and to determine the symmetry of the
incommensurability. For this purpose, we have realigned
the sample in thesH, 3H, Ld zone. If the 15 K profile
in Fig. 1(c) stems from an incommensurate structure with
peaks ats0.5 6 d, 0.5 6 dd [see Fig. 1(a)], scans along
the fH, 3Hg direction are expected to peak atH ­ 0.477
and 0.523 rlu ford ­ 0.057. On the other hand, if the un-
derlying symmetry is identical to that of 214 [rotated 45±

from Fig. 1(a)], the incommensurability in afH, 3Hg scan
should occur atH ­ 0.466 and 0.534 rlu. Figure 2 sum-
marizes the result at 24 meV [15]. The scattering at room
temperature shows no well-defined peak aroundsp , pd,
but at 70 K a two peak structure emerges. On cooling
below Tc, the spectrum rearranges itself with a suppres-
sion of fluctuations at a commensurate point accompanied
by an increase in intensity at incommensurate positions.
The wave vectors of the peaks in thefH, 3Hg scan are
consistent with either the incommensurate peaks shown in
Fig. 1(a) or those found for the 214 materials. However,
we stress that other structures may also explain the data and
more precise measurements are necessary before a conclu-
sive identification of the underlying structure can be made.

In previous work, superconductivity was found to
induce a strong enhancement inx 00sq, vd at sp , pd for
ideally [3,5,6] and underdoped [8–10] (123)O72x at the
resonance positions. Although the intensity gain of the
resonance belowTc is accompanied by a suppression of
fluctuations at frequencies above it for the underdoped
compounds [8,9], no constant-energy scan data are avail-
able at energies above the resonance. In light of the present
result at 24 meV for the (123)O6.6 sample which has a reso-
nance at 34 meV [8], it is important to collect data at
these frequencies. Thus, we undertook additional mea-
surements with improved resolution (collimation of
500-400-400-1200) in the hope of resolving possible incom-
mensurability at high energies. Figures 3(a) and 3(b)
suggest that the fluctuations at the resonance energy are
commensurate above and belowTc with no appreciable
change in width. For an energy above the resonance

(42 meV), the scan is featureless at room temperature but
shows a well-defined peak centered atsp , pd at 75 K.
Although superconductivity suppresses the magnetic
fluctuations [see inset of Fig. 3(d)], theq dependence
of the line shape cannot be conclusively determined
due to the poor instrumental resolution at this energy.
Unfortunately, further reduction in resolution volume is
impractical due to the concomitant drop in the scattering
intensities.

Since the earlier polarized neutron work [8] has shown
that for (123)O6.6 the 34 meV resonance is the dominant
feature ofx 00sq, vd at sp, pd in the low-temperature su-
perconducting state, it is important to compare the newly
observed incommensurate peaks to the intensity gain of
the resonance. Figure 4 shows the difference spectra be-
tween 15 and 75 K at frequencies below and above the
resonance. In the energy and temperature range of interest
(15 to 75 K), the phonon scattering changes negligibly and
the Bose population factorfnsvd 1 1g modifies the scat-
tered intensity at high temperatures by only 3% at 24 meV
and less at higher energies. Therefore, the difference spec-
tra in the figure can be simply regarded as changes in
the dynamical susceptibility, i.e.,x 00s15 Kd 2 x 00s75 Kd.

FIG. 4. Difference spectra alongsH , 3H , 1.7d between low
temperature (,Tc) and high temperature (øTc 1 12 K) at
(a) 24 meV, (b) 27 meV, (c) 34 meV, and (d) 42 meV. All
data were taken with the same monitor units. Solid lines are
guides to the eye. (e) Summary of triple-axis measurements.
Open squares indicate incommensurate positions. Solid and
open circles are the resonance and fluctuations at 42 meV,
respectively. The error bars show the energy resolution and
the intrinsicq width (FWHM).
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Inspection of Figs. 4(a) and 4(b) reveals that the suscepti-
bility at the incommensurate positions increases on cooling
from the normal to the superconducting state, accompanied
by a suppression of fluctuations at the commensurate point.
Comparison of Fig. 4(c) to Figs. 4(a) and 4(b) indicates
that the net gain in intensity at the incommensurate posi-
tions belowTc is much less than that of the resonance. For
an energy transfer of 42 meV, the intensity drop appears
uniform throughout the measured profile; however, instru-
mental resolution may mask any possible incommensurate
features. Figure 4(e) plots a summary of the triple-axis
measurements in superconducting state. Although there
are only two constant-energy scans for frequencies below
the resonance, these data nevertheless confirm the result of
the integrated technique.

To place our work in proper context, it is useful to com-
pare the results with various theoretical predictions. If
the (123)O72x system is indeed ad-wave superconduc-
tor, d-wave gap nodes could yield incommensurate peaks
[16] and the scattering of (123)O6.6 is expected to change
from commensurate in the normal state to incommensu-
rate in the superconducting state [17]. In this scenario,
the susceptibility at incommensurate positions should in-
crease on cooling belowTc for all frequencies below the
d-wave gap [17,18]. Our preliminary triple-axis mea-
surements [19] show that spin fluctuations at 16 meV are
also incommensurate in the normal state, but on cooling
below Tc these fluctuations are suppressed. At present,
it remains unclear how to reconcilethis simple d-wave
picture with these results, or perhaps even more problem-
atical, with the appearance of the incommensurate fluctua-
tions at temperatures aboveTc.

Alternatively, the observed incommensurate peaks may
be viewed as the signature of a stripe phase. Tranquada
et al. [20] have argued that the incommensurability in 214
may be associated with the spatial segregation of charge
or charge density wave correlations [21]. However,
if the idea of dynamical microphase separation in the
CuO2 plane asserted by Emery and Kivelson [22] is
relevant for the high-Tc superconductivity, one would
expect incommensurate spin fluctuations in other cuprate
superconductors. The observation of such fluctuations in
(123)O72x is consistent with this picture. Unfortunately,
there are no explicit predictions about the incommensurate
structure in (123)O72x from a stripe model that can be
directly compared with our experiments.

Finally, previous interpretations of NMR experiments
have assumed that AF spin fluctuations in (123)O72x

are commensurate and the spin correlation lengthj

is temperature independent [23]. Our data suggest a
reconsideration of these assumptions, particularly in view
of the apparent contradiction between the results of NMR
and neutron scattering experiments [24].
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