2,550 research outputs found
Zero Field precession and hysteretic threshold currents in spin torque oscillators with tilted polarizer
Using non-linear system theory and numerical simulations we map out the
static and dynamic phase diagram in zero applied field of a spin torque
oscillator with a tilted polarizer (TP-STO).We find that for sufficiently large
currents, even very small tilt angles (beta>1 degree) will lead to steady free
layer precession in zero field. Within a rather large range of tilt angles, 1
degree< beta <19 degree, we find coexisting static states and hysteretic
switching between these using only current. In a more narrow window (1
degree<beta<5 degree) one of the static states turns into a limit cycle
(precession). The coexistence of static and dynamic states in zero magnetic
field is unique to the tilted polarizer and leads to large hysteresis in the
upper and lower threshold currents for TP-STO operation.Comment: 5 pages, 4 figure
Trends in Elasticity and Electronic Structure of Transition-Metal Nitrides and Carbides from First Principles
The elastic properties of the -structured transition-metal nitrides and
their carbide counterparts are studied using the {\it ab initio\} density
functional perturbation theory. The linear response results of elastic
constants are in excellent agreement with those obtained from numerical
derivative methods, and are also consistent with measured data. We find the
following trends: (1) Bulk moduli and tetragonal shear moduli
, increase and lattice constants decrease
rightward or downward on the Periodic Table for the metal component or if C is
replaced by N; (2) The inequality holds for
; (3) depends strongly on the number of valence electrons per
unit cell (). From the fitted curve of as a function of , we
can predict that MoN is unstable in structure, and transition-metal
carbonitrides ( ZrCN) and di-transition-metal carbides
( HfTaC) have maximum at .Comment: 4 pages, 2 figures, submitted to PRL. 2 typos in ref. 15 were
correcte
Coherent lepton pair production in hadronic heavy ion collisions
Recently, significant enhancements of pair production at very
low transverse momentum ( GeV/c) were observed by the STAR
collaboration in peripheral hadronic A+A collisions. This excesses can not be
described by the QGP thermal radiation and in-medium broadening
calculations. This is a sign of coherent photon-photon interactions, which were
conventionally studied only in ultra-peripheral collisions. In this article, we
present calculations of lepton pair ( and )
production from coherent photon-photon interactions in hadronic A+A collisions
at RHIC and LHC energies within the STAR and ALICE acceptance
Model of C-Axis Resistivity of High-\Tc Cuprates
We propose a simple model which accounts for the major features and
systematics of experiments on the -axis resistivity, , for \lsco,
\ybco and \bsco . We argue that the -axis resistivity can be separated
into contributions from in-plane dephasing and the -axis ``barrier''
scattering processes, with the low temperature semiconductor-like behavior of
arising from the suppression of the in-plane density of states
measured by in-plane magnetic Knight shift experiments. We report on
predictions for in impurity-doped \ybco materials.Comment: 10 pages + figures, also see March Meeting J13.1
Coherent `ab' and `c' transport theory of high- cuprates
We propose a microscopic theory of the `'-axis and in-plane transport of
copper oxides based on the bipolaron theory and the Boltzmann kinetics. The
fundamental relationship between the anisotropy and the spin susceptibility is
derived, . The
temperature and doping dependence of the in-plane, and
out-of-plane, resistivity and the spin susceptibility,
are found in a remarkable agreement with the experimental data in underdoped,
optimally and overdoped for the entire temperature
regime from up to . The normal state gap is explained and its
doping and temperature dependence is clarified.Comment: 12 pages, Latex, 3 figures available upon reques
Pseudo Spin Valves Using a (112)-textured DO_22 MnGa Fixed Layer
We demonstrate pseudo spin valves with a (112)-textured DO_22 MnGa (MnGa)
tilted magnetization fixed layer and an in-plane CoFe free layer. Single D0_22
MnGa films exhibit a small magnetoresistance (MR) typically observed in metals.
In MnGa/Cu/ CoFe spin valves a transition from a negative (-0.08%) to positive
(3.88%) MR is realized by introducing a thin spin polarizing CoFe insertion
layer at the MnGa/Cu interface and tailoring the MnGa thickness. Finally, the
exchange coupling between the MnGa and CoFe insertion layer is studied using a
first-order reversal curve (FORC) technique.Comment: 5 pages, 4 figures, submitted to IEEE Magnetics Letter
Transverse optical plasmons in layered superconductors
We discuss the possible existance of transverse optical plasma modes in
superlattices consisting of Josephson coupled superconducting layers. These
modes appear as resonances in the current-current correlation function, as
opposed to the usual plasmons which are poles in the density-density channel.
We consider both bilayer superlattices, and single layer lattices with a spread
of interlayer Josephson couplings. We show that our model is in quantitative
agreement with the recent experimental observation by a number of groups of a
peak at the Josephson plasma frequency in the optical conductivity of
LaSrCuOComment: Proceedings of LT21, in press, 4 pages, Latex with LTpaper.sty and
epsfig.sty, 2 postscript figure
- …