4 research outputs found

    Exosomal Vimentin from Adipocyte Progenitors Protects Fibroblasts against Osmotic Stress and Inhibits Apoptosis to Enhance Wound Healing

    Get PDF
    Mechanical stress following injury regulates the quality and speed of wound healing. Improper mechanotransduction can lead to impaired wound healing and scar formation. Vimentin intermediate filaments control fibroblasts' response to mechanical stress and lack of vimentin makes cells significantly vulnerable to environmental stress. We previously reported the involvement of exosomal vimentin in mediating wound healing. Here we performed in vitro and in vivo experiments to explore the effect of wide-type and vimentin knockout exosomes in accelerating wound healing under osmotic stress condition. Our results showed that osmotic stress increases the size and enhances the release of exosomes. Furthermore, our findings revealed that exosomal vimentin enhances wound healing by protecting fibroblasts against osmotic stress and inhibiting stress-induced apoptosis. These data suggest that exosomes could be considered either as a stress modifier to restore the osmotic balance or as a conveyer of stress to induce osmotic stress-driven conditions

    PD-1 Cellular Nanovesicles Carrying Gemcitabine to Inhibit the Proliferation of Triple Negative Breast Cancer Cell

    No full text
    PD-1 inhibitor Keytruda combined with chemotherapy for Triple-negative breast cancer (TNBC) has been approved for FDA, successfully representing the combination therapy of immunotherapy and chemotherapy for the first time in 2020. However, PD-L1 inhibitor Tecentriq combined with albumin paclitaxel using the similar strategy failed to achieve the expected effect. Therefore, it is still necessary to explore new effective immunotherapy and chemotherapy-based combined strategies. We developed a cell membrane-derived programmed death-ligand 1(PD-1) nanovesicle to encapsulate low-dose gemcitabine (PD-1&GEM NVs) to study the effect on breast cancer in vitro and in vivo. We found that engineered PD-1&GEM NVs could synergistically inhibit the proliferation of triple-negative breast cancer, which interacted with PD-L1 in triple-negative breast cancer to disrupt the PD-L1/PD-1 immune inhibitory axis and promoted cancer cell apoptosis. Moreover, PD-1&GEM NVs had better tumor targeting ability for PD-L1 highly-expressed TNBC cells, contributing to increasing the drug effectiveness and reducing toxicity. Importantly, gemcitabine-encapsulated PD-1 NVs exerted stronger effects on promoting apoptosis of tumor cells, increasing infiltrated CD8+ T cell activation, delaying the tumor growth and prolonging the survival of tumor-bearing mice than PD-1 NVs or gemcitabine alone. Thus, our study highlighted the power of combined low-dose gemcitabine and PD-1 in the nanovesicles as treatment to treat triple-negative breast cancer

    Fe3+-binding transferrin nanovesicles encapsulating sorafenib induce ferroptosis in hepatocellular carcinoma

    No full text
    Abstract Background Ferroptosis, iron-dependent cell death, is an established mechanism for cancer suppression, particularly in hepatocellular carcinoma (HCC). Sorafenib (SOR), a frontline drug for the treatment of HCC, induces ferroptosis by inhibiting the Solute Carrier family 7 member 11 (SLC7A11), with inadequate ferroptosis notably contributing to SOR resistance in tumor cells. Methods To further verify the biological targets associated with ferroptosis in HCC, an analysis of the Cancer Genome Atlas (TCGA) database was performed to find a significant co-upregulation of SLC7A11 and transferrin receptor (TFRC), Herein, cell membrane-derived transferrin nanovesicles (TF NVs) coupled with Fe3+ and encapsulated SOR (SOR@TF-Fe3+ NVs) were established to synergistically promote ferroptosis, which promoted the iron transport metabolism by TFRC/TF-Fe3+ and enhanced SOR efficacy by inhibiting the SLC7A11. Results In vivo and in vitro experiments revealed that SOR@TF-Fe3+ NVs predominantly accumulate in the liver, and specifically targeted HCC cells overexpressing TFRC. Various tests demonstrated SOR@TF-Fe3+ NVs accelerated Fe3+ absorption and transformation in HCC cells. Importantly, SOR@TF-Fe3+ NVs were more effective in promoting the accumulation of lipid peroxides (LPO), inhibiting tumor proliferation, and prolonging survival rates in HCC mouse model than SOR and TF- Fe3+ NVs alone. Conclusions The present work provides a promising therapeutic strategy for the targeted treatment of HCC. Graphical abstrac
    corecore