1,180 research outputs found

    QUANTITATIVE MONITORING OF CEFRADINE IN HUMAN URINE USING A LUMINOL/SULFOBUTYLETHER-beta-CYCLODEXTRIN CHEMILUMINESCENCE SYSTEM

    Get PDF
    In this paper, a sensitive, rapid, and simple flow-injection chemiluminescence (FI-CL) technique is described for determining cefradine in human urine and capsule samples at the picogram level. The results show that cefradine within 0.1-100.0 nmol/L quantitatively quenches the CL intensity of the luminol/sulfo butylether-beta-cyclodextrin (SBE-beta-CD) system, with a relative correlation coefficient r of 0.9931. Subsequently, the possible mechanism for the quenching phenomenon is discussed in detail using the FI-CL and molecular docking methods. The proposed CL method, with a detection limit of 0.03 nmol/L (3 sigma) and relative standard deviations < 3.0% (N = 7), is then implemented to monitor the excretion of cefradine in human urine. After orally administration, the cefradine reaches a maximum value of 1.37 +/- 0.02 mg/mL at 2.0 h in urine, and the total excretion is 4.41 +/- 0.03 mg/mL within 8.0 h. The absorption rate constant k(a), the elimination rate constant k(e), and the half-life t(1/2) are 0.670 +/- 0.008 h(-1), 0.744 +/- 0.005 h(-1), and 0.93 +/- 0.05 h, respectively

    A flicker-free electrolytic capacitor-less AC-DC LED driver

    Get PDF
    published_or_final_versio

    Hepatitis B Virus Core Promoter Double Mutations (A1762T, G1764A) Are Associated with Lower Levels of Serum Dihydrolipoyl Dehydrogenase

    Get PDF
    Published by S. Karger AG, BaselObjectives: The aim of this study was to identify serum proteins with differential concentrations between hepatocellular carcinoma (HCC) patients and HBsAg asymptomatic carriers among individuals infected with hepatitis B virus (HBV) with basal core promoter (BCP) double mutations (A1762T, G1764A). Methods: iTRAQ and liquid chromatography-tandem mass spectrometry were used to identify differentially expressed protein, and an ELISA test was used for the validation test. Results: The total number of proteins identified was 1,125, of which 239 showed statistically significant differences in their expression. The relative concentrations of serum dihydrolipoyl dehydrogenase (DLD), which showed the most significant correlation with liver diseases and infection, were significantly lower in HCC patients than asymptomatic HBsAg carriers and individuals negative for HBsAg. However, only the difference between HCC patients with BCP double mutations and HBsAg-negative individuals could be confirmed by ELISA. Meanwhile, we found that the concentrations of serum DLD in those infected with HBV with BCP double mutations were significantly lower than in individuals with the wild-type BCP. However, the difference in the concentrations of serum DLD between individuals with wild-type BCP and those negative for HBsAg was not significant. Conclusions: HBV with BCP double mutations are associated with lower concentrations of serum DLD

    Microstructures and resistivity of cuprate/manganite bilayer deposited on SrTiO3 substrate

    Get PDF
    Thin Yba[SUB2]Cu[SUB3]O[SUB7-δ/La[SUB0.67]Ca[SUB0.33]MnO[SUB3] (YBCO/LCMO) films were grown on SrTiO[SUB3](STO)substrates by magnetron sputtering technique. The microstructures of the bilayers were characterized and a standard four-probe technique was applied to measure the resistivity of the samples. The interdiffusions at the YBCO/LCMO and LCMO/STO interfaces formed two transient layers with the thickness of about 3 and 2 nm, respectively. All the bilayers were well textured along the c axis. At low temperature, the superconductivity can only be observed when the thickness of YBCO is more than 25 nm. When the thickness of YBCO is less than 8 nm, the bilayers show only ferromagnetism. The superconductivity and ferromagnetism perhaps coexist in the bilayer with the YBCO thickness of 12.5 nm. These interesting properties are related to the interaction between spin polarized electrons in the manganites and the cooper pairs in the cuprates. © 2003 American Institute of Physics.published_or_final_versio

    The shear mode of multilayer graphene

    Get PDF
    The quest for materials capable of realizing the next generation of electronic and photonic devices continues to fuel research on the electronic, optical and vibrational properties of graphene. Few-layer graphene (FLG) flakes with less than ten layers each show a distinctive band structure. Thus, there is an increasing interest in the physics and applications of FLGs. Raman spectroscopy is one of the most useful and versatile tools to probe graphene samples. Here, we uncover the interlayer shear mode of FLGs, ranging from bilayer graphene (BLG) to bulk graphite, and suggest that the corresponding Raman peak measures the interlayer coupling. This peak scales from ~43 cm−1 in bulk graphite to ~31 cm−1 in BLG. Its low energy makes it sensitive to near-Dirac point quasiparticles. Similar shear modes are expected in all layered materials, providing a direct probe of interlayer interactions

    Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces

    Get PDF
    In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure

    SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene

    Get PDF
    The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions
    corecore