52 research outputs found

    Phase-Sensitive Mode Conversion and Equalization in a Few Mode Fiber Through Parametric Interactions

    Get PDF
    The parametric interaction in few mode fibers is theoretically and numerically studied in the particular case in which the signal and the idler waves are frequency degenerate but mode nondegenerate. Under simplifying hypotheses, we derive analytical formulas for the phase-insensitive and phase-sensitive amplification gain and conversion efficiency. The analytical formulas are in very good agreement with the numerical solutions of a full vectorial model that takes into account losses, mode coupling, and all possible four-wave mixing interactions. In the phase-sensitive regime, we predict that for small input pump powers, a large and tunable phase-sensitive extinction ratio can be achieved on one mode, whereas the other mode power remains essentially unaffected. Finally, in the high-gain regime, the self-equalization of the output power on different modes can be also achieved

    Supercontinuum generation by higher-order mode excitation in a photonic crystal fiber

    Get PDF
    We describe an experiment in which a train of femtosecond pulses is coupled into a photonic crystal fiber (PCF) by means of an offset pumping technique that can selectively excite either the mode LP(01) or LP(11) or LP(21). The PCF presents a wide range of wavelengths in which the fundamental mode experiences normal dispersion, whereas LP(11) and LP(21) propagate in the anomalous dispersion regime, generating a supercontinuum based on the soliton fission mechanism. We find that the existence of a cut-off wavelength for the higher-order modes makes the spectral broadening asymmetrical. This latter effect is particularly dramatic in the case of the LP(21) mode, in which, by using a pump wavelength slightly below cut-off, the spectral broadening occurs only on the blue side of the pump wavelength. Our experimental results are successfully compared to numerical solutions of the nonlinear Schrödinger equation

    Detection of Bessel beams with digital axicons

    Full text link
    We propose a simple method for the detection of Bessel beams with arbitrary radial and azimuthal indices, and then demonstrate it in an all-digital setup with a spatial light modulator. We confirm that the fidelity of the detection method is very high, with modal cross-talk below 5%, even for high orbital angular momentum carrying fields with long propagation ranges. To illustrate the versatility of the approach we use it to observe the modal spectrum changes during the self-reconstruction process of Bessel beams after encountering an obstruction, as well as to characterize modal distortions of Bessel beams propagating through atmospheric turbulence

    Numerical and experimental analysis of the birefringence of large air fraction slightly unsymmetrical holey fibres

    No full text
    International audienceCareful numerical computations show that very slight geometrical imperfections of the cross-section of actual large air-fraction holey fibres (d/Λ > 0.6) may induce surprisingly high birefringence, corresponding to beat lengths as short as few millimeters. The spectral variations of this birefringence obeys laws similar to those of elliptical core Hi-Bi holey fibres with low air-fraction. For all the tested fibres, the group birefringence numerically deduced from the only shape birefringence is in good agreement with the measured one that does not varies when strongly heating the fibres. These computations and measurements show that the contribution of possible inner stress to the birefringence is negligible

    Full modal analysis of the Brillouin gain spectrum of an optical fiber

    No full text
    We present a numerical study of stimulated Brillouin scattering in optical fibers based on a full modal analysis of the acoustic and optical properties. The computation of each acoustic mode supported by the fiber structure allows us a deep and detailed investigation of the characteristics of the Brillouin gain spectrum. We focus our attention on optical fibers acting as acoustic antiwaveguides where the biggest contribution to the Brillouin response often comes from very high-order modes but it is sometimes overlooked because of computational issues. Our analysis clearly highlights their role and their dependence on the physical and geometrical structure of the fiber
    • …
    corecore