128 research outputs found

    Polarized images of charged particles in vortical motions around a magnetized Kerr black hole

    Full text link
    In this work, we study the images of a Kerr black hole (BH) immersed in uniform magnetic fields, illuminated by the synchrotron radiation of charged particles in the jet. We particularly focus on the spontaneously vortical motions (SVMs) of charged particles in the jet region and investigate the polarized images of electromagnetic radiations from the trajectories along SVMs. We notice that there is a critical value ωc\omega_c for charged particle released at a given initial position and subjected an outward force, and once ∣qB0/m∣=∣ωB∣>∣ωc∣|qB_0/m|=|\omega_B|>|\omega_c| charged particles can move along SVMs in the jet region. We obtain the polarized images of the electromagnetic radiations from the trajectories along SVMs. Our simplified model suggests that the SVM radiations can act as the light source to illuminate the BH and form a photon ring structure.Comment: 24 pages, 8 figure

    Diffusion Probabilistic Model Based Accurate and High-Degree-of-Freedom Metasurface Inverse Design

    Full text link
    Conventional meta-atom designs rely heavily on researchers' prior knowledge and trial-and-error searches using full-wave simulations, resulting in time-consuming and inefficient processes. Inverse design methods based on optimization algorithms, such as evolutionary algorithms, and topological optimizations, have been introduced to design metamaterials. However, none of these algorithms are general enough to fulfill multi-objective tasks. Recently, deep learning methods represented by Generative Adversarial Networks (GANs) have been applied to inverse design of metamaterials, which can directly generate high-degree-of-freedom meta-atoms based on S-parameter requirements. However, the adversarial training process of GANs makes the network unstable and results in high modeling costs. This paper proposes a novel metamaterial inverse design method based on the diffusion probability theory. By learning the Markov process that transforms the original structure into a Gaussian distribution, the proposed method can gradually remove the noise starting from the Gaussian distribution and generate new high-degree-of-freedom meta-atoms that meet S-parameter conditions, which avoids the model instability introduced by the adversarial training process of GANs and ensures more accurate and high-quality generation results. Experiments have proven that our method is superior to representative methods of GANs in terms of model convergence speed, generation accuracy, and quality

    Liquefaction evaluation method of coral sand: Case study on the ports in Indonesia

    Get PDF
    While the liquefaction evaluation methods of siliceous sand have undergone extensive studies, few research efforts were conducted to establish standard for the liquefaction susceptibility of coral sand. The current study develops an innovative method to evaluate the liquefaction potential of coral sand. Specifically, the method integrates the grain-size distribution of coral sand, effective overburden stress and equivalent seismic acceleration. Scanning electron microscopy image of coral sand was processed to reveal the microstructural characteristics of coral sand. The correction equation for standard penetration resistance of coral sand in Indonesian ports was given based on geotechnical investigations, and the recommended values of correction factors were proposed for the regions lacking relevant data in the previous period. The process for liquefaction evaluation method of coral sand was described and applied to evaluate the liquefaction potential of coral sand in Indonesian port projects. This study demonstrates the feasibility of integrating standard penetration test and grain-size distribution for liquefaction evaluation of coral sand

    Janus icosahedral particles: amorphization driven by three-dimensional atomic misfit and edge dislocation compensation

    Full text link
    Icosahedral nanoparticles composed of fivefold twinned tetrahedra have broad applications. The strain relief mechanism and angular deficiency in icosahedral multiply twinned particles are poorly understood in three dimensions. Here, we resolved the three-dimensional atomic structures of Janus icosahedral nanoparticles using atomic resolution electron tomography. A geometrically fivefold face consistently corresponds to a less ordered face like two hemispheres. We quantify rich structural variety of icosahedra including bond orientation order, bond length, strain tensor; and packing efficiency, atom number, solid angle of each tetrahedron. These structural characteristics exhibit two-sided distribution. Edge dislocations near the axial atoms and small disordered domains fill the angular deficiency. Our findings provide new insights how the fivefold symmetry can be compensated and the geometrically-necessary internal strains relived in multiply twinned particles.Comment: 30 pages, 5 figure

    Exploring Key Factors for Contractors in Opening Prefabrication Factories: A Chinese Case Study

    Get PDF
    Adoption of prefabrication is essential for improving the urban built environment. However, the existing prefabrication market in China is far from mature. As the stakeholder who conducts construction activities, the contractor is facing a dilemma of lacking steady prefabricated components supply. In this circumstance, a potential solution is that contractors open their own prefabrication factories to guarantee stable component supply. The aim of this research is exploring the key factors for contractors to open prefabrication factories. Firstly, a total of 28 influencing factors were identified from literature. Then, the identified factors were divided into four categories: policy environment, market environment, technological environment, and enterprise internal environment. Through interviews with experienced professionals, a total of 19 factors were selected for future analysis. Based on the 19 factors, a questionnaire was designed and distributed to the experts to rate the degree of mutual influences. The collected data were analyzed using Ucinet6.0 software, and the adjacency matrix and the visual models were established. Finally, through the analysis of node centrality, betweenness centrality, and closeness centrality, the four key influencing factors were determined including mandatory implementation policy, precast concrete component's price, market demand, and contractor's strategic objectives. The results of this study could assist contractors in making decisions of opening their own prefabrication factories toward more sustainable environment

    PuzzleFlex: kinematic motion of chains with loose joints

    Full text link
    This paper presents a method of computing free motions of a planar assembly of rigid bodies connected by loose joints. Joints are modeled using local distance constraints, which are then linearized with respect to configuration space velocities, yielding a linear programming formulation that allows analysis of systems with thousands of rigid bodies. Potential applications include analysis of collections of modular robots, structural stability perturbation analysis, tolerance analysis for mechanical systems, and formation control of mobile robots.Comment: Accepted at the 2020 IEEE International Conference on Robotics and Automation (ICRA
    • …
    corecore