10 research outputs found

    Transport Properties of the Two-Dimensional Hole Gas for H-Terminated Diamond with an Al2O3 Passivation Layer

    No full text
    Diamonds are thought to be excellent candidates of next-generation semiconductor materials for high power and high frequency devices. A two-dimensional hole gas in a hydrogen-terminated diamond shows promising properties for microwave power devices. However, high sheet resistance and low carrier mobility are still limiting factors for the performance improvement of hydrogen-terminated diamond field effect transistors. In this work, the carrier scattering mechanisms of a two-dimensional hole gas in a hydrogen-terminated diamond are studied. Surface roughness scattering and ionic impurity scattering are found to be the dominant scattering sources. Impurity scattering enhancement was found for the samples after a high-temperature Al2O3 deposition process. This work gives some insight into the carrier transport of hydrogen-terminated diamonds and should be helpful for the development of diamond field effect transistors

    Hydrogen-terminated diamond MOSFETs on (0 0 1) single crystal diamond with state of the art high RF power density

    No full text
    Diamond field-effect transistor (FET) has great application potential for high frequency and high power electronic devices. In this work, diamond FETs were fabricated on (0 0 1) single crystal diamond with homoepitaxial layer. The nitrogen impurity content in the homoepitaxial layer is greatly decreased as measured by the Raman and photoluminescence spectra. The diamond field effect transistor with 100 nm Al2O3 as gate dielectric shows ohomic contact resistance of 35 Ω . mm, maximum drain saturation current density of 500 mA/mm, and maximum transconductance of 20.1 mS/mm. Due to the high quality of Al2O3 gate dielectric and single crystal diamond substrate, the drain work voltage of −58 V is achieved for the diamond FETs. A continuous wave output power density of 4.2 W/mm at 2 GHz is obtained. The output power densities at 4 and 10 GHz are also improved and achieve 3.1 and 1.7 W/mm, respectively. This work shows the application potential of single crystal diamond for high frequency and high power electronic devices

    Identification of upstream transcription factor binding sites in orthologous genes using mixed Student's t-test statistics.

    No full text
    BackgroundTranscription factor (TF) regulates the transcription of DNA to messenger RNA by binding to upstream sequence motifs. Identifying the locations of known motifs in whole genomes is computationally intensive.Methodology/principal findingsThis study presents a computational tool, named "Grit", for screening TF-binding sites (TFBS) by coordinating transcription factors to their promoter sequences in orthologous genes. This tool employs a newly developed mixed Student's t-test statistical method that detects high-scoring binding sites utilizing conservation information among species. The program performs sequence scanning at a rate of 3.2 Mbp/s on a quad-core Amazon server and has been benchmarked by the well-established ChIP-Seq datasets, putting Grit amongst the top-ranked TFBS predictors. It significantly outperforms the well-known transcription factor motif scanning tools, Pscan (4.8%) and FIMO (17.8%), in analyzing well-documented ChIP-Atlas human genome Chip-Seq datasets.SignificanceGrit is a good alternative to current available motif scanning tools

    Transport Properties of the Two-Dimensional Hole Gas for H-Terminated Diamond with an Al<sub>2</sub>O<sub>3</sub> Passivation Layer

    No full text
    Diamonds are thought to be excellent candidates of next-generation semiconductor materials for high power and high frequency devices. A two-dimensional hole gas in a hydrogen-terminated diamond shows promising properties for microwave power devices. However, high sheet resistance and low carrier mobility are still limiting factors for the performance improvement of hydrogen-terminated diamond field effect transistors. In this work, the carrier scattering mechanisms of a two-dimensional hole gas in a hydrogen-terminated diamond are studied. Surface roughness scattering and ionic impurity scattering are found to be the dominant scattering sources. Impurity scattering enhancement was found for the samples after a high-temperature Al2O3 deposition process. This work gives some insight into the carrier transport of hydrogen-terminated diamonds and should be helpful for the development of diamond field effect transistors
    corecore