43 research outputs found

    SALL1 enforces microglia-specific DNA binding and function of SMADs to establish microglia identity

    Get PDF
    Spalt-like transcription factor 1 (SALL1) is a critical regulator of organogenesis and microglia identity. Here we demonstrate that disruption of a conserved microglia-specific super-enhancer interacting with the Sall1 promoter results in complete and specific loss of Sall1 expression in microglia. By determining the genomic binding sites of SALL1 and leveraging Sall1 enhancer knockout mice, we provide evidence for functional interactions between SALL1 and SMAD4 required for microglia-specific gene expression. SMAD4 binds directly to the Sall1 super-enhancer and is required for Sall1 expression, consistent with an evolutionarily conserved requirement of the TGFβ and SMAD homologs Dpp and Mad for cell-specific expression of Spalt in the Drosophila wing. Unexpectedly, SALL1 in turn promotes binding and function of SMAD4 at microglia-specific enhancers while simultaneously suppressing binding of SMAD4 to enhancers of genes that become inappropriately activated in enhancer knockout microglia, thereby enforcing microglia-specific functions of the TGFβ–SMAD signaling axis.</p

    Numerical Analysis on the Hydrodynamic Performance of an Artificially Ventilated Surface-Piercing Propeller

    No full text
    When operated under large water immersion, surface piercing propellers are prone to be in heavy load conditions. To improve the hydrodynamic performance of the surface piercing propellers, engineers usually artificially ventilate the blades by equipping a vent pipe in front of the propeller disc. In this paper, the influence of artificial ventilation on the hydrodynamic performance of surface piercing propellers under full immersion conditions was investigated using the Computational Fluid Dynamics (CFD) method. The numerical results suggest that the effect of artificial ventilation on the pressure distribution on the blades decreases along the radial direction. And at low advancing speed, the thrust, torque as well as the efficiency of the propeller are smaller than those without ventilation. However, with the increase of the advancing speed, the efficiency of the propeller rapidly increases and can be greater than the without-ventilation case. The numerical results demonstrates the effectiveness of the artificial ventilation approach for improving the hydrodynamic performance of the surface piercing propellers for high speed planning crafts

    Automatic Multiple-Needle Surgical Planning of Robotic-Assisted Microwave Coagulation in Large Liver Tumor Therapy.

    No full text
    The "robotic-assisted liver tumor coagulation therapy" (RALTCT) system is a promising candidate for large liver tumor treatment in terms of accuracy and speed. A prerequisite for effective therapy is accurate surgical planning. However, it is difficult for the surgeon to perform surgical planning manually due to the difficulties associated with robot-assisted large liver tumor therapy. These main difficulties include the following aspects: (1) multiple needles are needed to destroy the entire tumor, (2) the insertion trajectories of the needles should avoid the ribs, blood vessels, and other tissues and organs in the abdominal cavity, (3) the placement of multiple needles should avoid interference with each other, (4) an inserted needle will cause some deformation of liver, which will result in changes in subsequently inserted needles' operating environment, and (5) the multiple needle-insertion trajectories should be consistent with the needle-driven robot's movement characteristics. Thus, an effective multiple-needle surgical planning procedure is needed. To overcome these problems, we present an automatic multiple-needle surgical planning of optimal insertion trajectories to the targets, based on a mathematical description of all relevant structure surfaces. The method determines the analytical expression of boundaries of every needle "collision-free reachable workspace" (CFRW), which are the feasible insertion zones based on several constraints. Then, the optimal needle insertion trajectory within the optimization criteria will be chosen in the needle CFRW automatically. Also, the results can be visualized with our navigation system. In the simulation experiment, three needle-insertion trajectories were obtained successfully. In the in vitro experiment, the robot successfully achieved insertion of multiple needles. The proposed automatic multiple-needle surgical planning can improve the efficiency and safety of robot-assisted large liver tumor therapy, significantly reduce the surgeon's workload, and is especially helpful for an inexperienced surgeon. The methodology should be easy to adapt in other body parts

    Hydrogen-terminated polycrystalline diamond MOSFETs with Al2O3 passivation layers grown by atomic layer deposition at different temperatures

    No full text
    Metal oxide semiconductor field effect transistors (MOSFETs) with Al2O3 passivation layer grown by atomic layer deposition (ALD) at 200 oC and 300 oC were fabricated on hydrogen-terminated polycrystalline diamond by using gold mask technology. The device with 200 oC grown Al2O3 dielectric shows high output current, low on-resistance, large threshold voltage and high transconductance compared to that with 300 oC grown Al2O3. A maximum drain current of 339 mA/mm has been achieved by the 2-μm device of the former kind, which, as we know, is the best result reported for the diamond MOSFETs with the same gate length except the NO2-adsorbed case. The current-voltage (I-V) of gate diodes of both kinds of devices show the gate forward leakage is dominated by the Frenkel-Poole (FP) emission mechanism at a high electric field, and the gate of the latter device can sustain higher forward bias. The stability of successive I-V measurements of both kinds of devices was proved. We expect that a high performance H-diamond MOSFET with high stability can be achieved by a double-layer dielectric structure with 200 oC grown Al2O3 stacked by another high-quality high κ dielectric

    High frequency single crystalline diamond MOSFET with high temperature (300 °C) ALD grown Al2O3 dielectric

    No full text
    In this paper, hydrogen terminated metal oxide semiconductor field effect transistors (MOSFETs) having a sub-micron gate length were fabricated on a single crystalline diamond sample using the 300 °C ALD grown Al2O3 as gate dielectric and passivation layer. The device shows a maximum output current density of 942 mA/mm and a lowest on-resistance of 6.2 Ω·mm at a VGS of −3 V. A maximum transconductance of 284 mS/mm was achieved. In addition, a high cut-off frequency of 41.3 GHz and a maximum oscillation frequency of 80.6 GHz were achieved. These are the highest values among the reported H-diamond MOSFETs with high temperature (>200 °C) grown dielectrics. The hole mobility is estimated to be 138 cm2/Vs at VGS = -3 V. The high carrier mobility contributes to the achievement of the high output current density. These results demonstrate that the high temperature grown Al2O3 dielectric has also a great potential to be used in high frequency H-diamond MOSFETs

    High temperature stability of H-diamond high frequency MOSFET with 300°C grown Al2O3 dielectric

    No full text
    The high frequency H-diamond metal-oxide-semiconductor field effect transistors (MOSFETs) were fabricated on single diamond substrate using 300°C ALD grown Al2O3 as gate dielectric and passivation layer. The devices gate length, gate/drain spacing and dielectric thickness are 100 nm, 2 μm, and 10 nm, respectively. The direct-current and frequency characteristics were investigated. The device shows a maximum saturation drain current of −492.6 mA/mm and gm of 135.2 mS/mm. The device shows good high temperature working performance, and the maximum saturation drain current only has a little decreasing of 7.6%. at 200°C. In addition, the device exhibits a maximum cut-off frequency of 36.2 GHz and maximum oscillation frequency of 70.5 GHz. The transient drain current response measurement indicates that the drain current can follow the changing of gate voltage at the frequency of 1 MHz. These results indicate that the Al2O3 dielectric is suitable for using in high frequency or the high-speed switching devices

    Study on the Mechanism and Control of Rock Burst of Coal Pillar under Complex Conditions

    No full text
    In order to explore the mechanism of coal pillar rock burst in the overlying coal body area, taking W1123 working face of Kuangou Coal Mine as the engineering background, the full mining stage of W1123 is simulated by FLAC3D. It is found that the high stress concentration area has appeared on both sides of the coal pillar when W1123 does not start mining. With the advance of the working face, the high stress concentration area forms X-shaped overlap. There is an obvious difference in the stress state between the coal pillar under the solid coal and the coal pillar under the gob in W1123. The concrete manifestation is that the vertical stress of the coal pillar below the solid coal is greater than the vertical stress of the coal pillar below the gob. The position of the obvious increase of the stress of the coal pillar in the lower part of the solid coal is ahead of the advancing position of the working face, and the position of the obvious increase of the stress of the lower coal pillar in the gob lags behind the advancing position of the working face. At the same time, in order to accurately reflect the true stress environment of coal pillars, the author conducted a physical similarity simulation experiment in the laboratory to study the local mining process of the W1123 working face, and it is found that under the condition of extremely thick and hard roof, the roof will be formed in the gob, the mechanical model of roof hinged structurer is constructed and analyzed, and the results show that the horizontal thrust of roof structure increases with the increase of rotation angle. With the development of mining activities, the self-stable state of the high stress balance in the coal pillar is easily broken by the impact energy formed by the sudden collapse of the key strata. Therefore, the rock burst of coal pillar in the overlying coal body area is the result of both static load and dynamic load. In view of the actual situation of the Kuangou Coal Mine, the treatment measures of rock burst are put forward from the point of view of the coal body and rock mass

    Polycrystalline diamond RF MOSFET with MoO3 gate dielectric

    No full text
    We report the radio frequency characteristics of the diamond metal-oxide-semiconductor field effect transistor with MoO3 gate dielectric for the first time. The device with 2-μm gate length was fabricated on high quality polycrystalline diamond. The maximum drain current of 150 mA/mm at VGS = -5 V and the maximum transconductance of 27 mS/mm were achieved. The extrinsic cutoff frequency of 1.2 GHz and the maximum oscillation frequency of 1.9 GHz have been measured. The moderate frequency characteristics are attributed to the moderate transconductance limited by the series resistance along the channel. We expect that the frequency characteristics of the device can be improved by increasing the magnitude of gm, or fundamentally decreasing the gate-controlled channel resistance and series resistance along the channel, and down-scaling the gate length

    Morphological dependent Indium incorporation in InGaN/GaN multiple quantum wells structure grown on 4° misoriented sapphire substrate

    No full text
    The epitaxial layers of InGaN/GaN MQWs structure were grown on both planar and vicinal sapphire substrates by metal organic chemical vapor deposition. By comparing the epitaxial layers grown on planar substrate, the sample grown on 4° misoriented from c-plane toward < 10 1 ̄ 0 > m-plane substrate exhibited many variations both on surface morphology and optical properties according to the scanning electronic microscopy and cathodoluminescence (CL) spectroscopy results. Many huge steps were observed in the misoriented sample and a large amount of V-shape defects located around the boundary of the steps. Atoms force microscopy images show that the steps were inclined and deep grooves were formed at the boundary of the adjacent steps. Phase separation was observed in the CL spectra. CL mapping results also indicated that the deep grooves could effectively influence the localization of Indium atoms and form an In-rich region
    corecore