3 research outputs found
Modelling of Floor Heating and Cooling in Residential Districts
In this study, a method is proposed to expand the utilization of an existing calculation model for a floor heat exchanger (HX) from room scale to small district scale. The model, namely Trnsys Type 653, is typically employed for the simulation of single or simultaneously controlled parallel heating circuits. It uses a simplified approach to calculate the heat exchange between fluid and screed, taking the HX effectiveness as an input. In order to calculate the effectiveness based on the HX design, fluid properties and mass flow rate, a Python model is developed to be coupled with Type 653. The results are compared to a reference finite element model set up in COMSOL® and depend on the HX design. The highest deviations range from over 1 K for 35 min to over 2 K for 175 min, while the lowest deviations range from below 0.5 K to below 1 K. Furthermore, the simplification of the floor HX model is analyzed by summarizing heating circuits from single rooms to a whole flat and from single flats to a whole floor. This approach results in deviations of approximately 2 and 4%, respectively, in the overall transferred heat over longer periods of time, while the switch-on frequency of the controller in an exemplary day is halved. While further analysis is required, the described simplifications seem promising for detailed district simulations with relatively low computational effort
Filled Carbon Nanotubes as Anode Materials for Lithium-Ion Batteries
Downsizing well-established materials to the nanoscale is a key route to
novel functionalities, in particular if different functionalities are merged in
hybrid nanomaterials. Hybrid carbon-based hierarchical nanostructures are
particularly promising for electrochemical energy storage since they combine
benefits of nanosize effects, enhanced electrical conductivity and integrity of
bulk materials. We show that endohedral multiwalled carbon nanotubes (CNT)
encapsulating high-capacity (here: conversion and alloying) electrode materials
have a high potential for use in anode materials for lithium-ion batteries
(LIB). There are two essential characteristics of filled CNT relevant for
application in electrochemical energy storage: (1) rigid hollow cavities of the
CNT provide upper limits for nanoparticles in their inner cavities which are
both separated from the fillings of other CNT and protected against
degradation. In particular, the CNT shells resist strong volume changes of
encapsulates in response to electrochemical cycling, which in conventional
conversion and alloying materials hinders application in energy storage
devices. (2) Carbon mantles ensure electrical contact to the active material as
they are unaffected by potential cracks of the encapsulate and form a stable
conductive network in the electrode compound. Our studies confirm that
encapsulates are electrochemically active and can achieve full theoretical
reversible capacity. The results imply that encapsulating nanostructures inside
CNT can provide a route to new high-performance nanocomposite anode materials
for LIB.Comment: Invite
Modelling of floor heating and cooling in residential districts
In this study, a method is proposed to expand the utilization of an existing calculation model for a floor heat exchanger (HX) from room scale to small district scale. The model, namely Trnsys Type 653, is typically employed for the simulation of single or simultaneously controlled parallel heating circuits. It uses a simplified approach to calculate the heat exchange between fluid and screed, taking the HX effectiveness as an input. In order to calculate the effectiveness based on the HX design, fluid properties and mass flow rate, a Python model is developed to be coupled with Type 653. The results are compared to a reference finite element model set up in COMSOL® and depend on the HX design. The highest deviations range from over 1 K for 35 min to over 2 K for 175 min, while the lowest deviations range from below 0.5 K to below 1 K. Furthermore, the simplification of the floor HX model is analyzed by summarizing heating circuits from single rooms to a whole flat and from single flats to a whole floor. This approach results in deviations of approximately 2 and 4%, respectively, in the overall transferred heat over longer periods of time, while the switch-on frequency of the controller in an exemplary day is halved. While further analysis is required, the described simplifications seem promising for detailed district simulations with relatively low computational effort